This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opoe | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) ∧ ( 𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵 ) ) → 2 ∥ ( 𝐴 + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 | ⊢ ( 𝐴 ∈ ℤ → ( ¬ 2 ∥ 𝐴 ↔ ∃ 𝑎 ∈ ℤ ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ) ) | |
| 2 | odd2np1 | ⊢ ( 𝐵 ∈ ℤ → ( ¬ 2 ∥ 𝐵 ↔ ∃ 𝑏 ∈ ℤ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) ) | |
| 3 | 1 2 | bi2anan9 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ↔ ( ∃ 𝑎 ∈ ℤ ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ∃ 𝑏 ∈ ℤ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) ) ) |
| 4 | reeanv | ⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) ↔ ( ∃ 𝑎 ∈ ℤ ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ∃ 𝑏 ∈ ℤ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) ) | |
| 5 | 2z | ⊢ 2 ∈ ℤ | |
| 6 | zaddcl | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 + 𝑏 ) ∈ ℤ ) | |
| 7 | 6 | peano2zd | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( 𝑎 + 𝑏 ) + 1 ) ∈ ℤ ) |
| 8 | dvdsmul1 | ⊢ ( ( 2 ∈ ℤ ∧ ( ( 𝑎 + 𝑏 ) + 1 ) ∈ ℤ ) → 2 ∥ ( 2 · ( ( 𝑎 + 𝑏 ) + 1 ) ) ) | |
| 9 | 5 7 8 | sylancr | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 2 ∥ ( 2 · ( ( 𝑎 + 𝑏 ) + 1 ) ) ) |
| 10 | zcn | ⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℂ ) | |
| 11 | zcn | ⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ ) | |
| 12 | addcl | ⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 𝑎 + 𝑏 ) ∈ ℂ ) | |
| 13 | 2cn | ⊢ 2 ∈ ℂ | |
| 14 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 15 | adddi | ⊢ ( ( 2 ∈ ℂ ∧ ( 𝑎 + 𝑏 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( 2 · ( ( 𝑎 + 𝑏 ) + 1 ) ) = ( ( 2 · ( 𝑎 + 𝑏 ) ) + ( 2 · 1 ) ) ) | |
| 16 | 13 14 15 | mp3an13 | ⊢ ( ( 𝑎 + 𝑏 ) ∈ ℂ → ( 2 · ( ( 𝑎 + 𝑏 ) + 1 ) ) = ( ( 2 · ( 𝑎 + 𝑏 ) ) + ( 2 · 1 ) ) ) |
| 17 | 12 16 | syl | ⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 2 · ( ( 𝑎 + 𝑏 ) + 1 ) ) = ( ( 2 · ( 𝑎 + 𝑏 ) ) + ( 2 · 1 ) ) ) |
| 18 | adddi | ⊢ ( ( 2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 2 · ( 𝑎 + 𝑏 ) ) = ( ( 2 · 𝑎 ) + ( 2 · 𝑏 ) ) ) | |
| 19 | 13 18 | mp3an1 | ⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 2 · ( 𝑎 + 𝑏 ) ) = ( ( 2 · 𝑎 ) + ( 2 · 𝑏 ) ) ) |
| 20 | 19 | oveq1d | ⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( ( 2 · ( 𝑎 + 𝑏 ) ) + ( 2 · 1 ) ) = ( ( ( 2 · 𝑎 ) + ( 2 · 𝑏 ) ) + ( 2 · 1 ) ) ) |
| 21 | 17 20 | eqtrd | ⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 2 · ( ( 𝑎 + 𝑏 ) + 1 ) ) = ( ( ( 2 · 𝑎 ) + ( 2 · 𝑏 ) ) + ( 2 · 1 ) ) ) |
| 22 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 23 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 24 | 22 23 | eqtri | ⊢ ( 2 · 1 ) = ( 1 + 1 ) |
| 25 | 24 | oveq2i | ⊢ ( ( ( 2 · 𝑎 ) + ( 2 · 𝑏 ) ) + ( 2 · 1 ) ) = ( ( ( 2 · 𝑎 ) + ( 2 · 𝑏 ) ) + ( 1 + 1 ) ) |
| 26 | 21 25 | eqtrdi | ⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 2 · ( ( 𝑎 + 𝑏 ) + 1 ) ) = ( ( ( 2 · 𝑎 ) + ( 2 · 𝑏 ) ) + ( 1 + 1 ) ) ) |
| 27 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝑎 ∈ ℂ ) → ( 2 · 𝑎 ) ∈ ℂ ) | |
| 28 | 13 27 | mpan | ⊢ ( 𝑎 ∈ ℂ → ( 2 · 𝑎 ) ∈ ℂ ) |
| 29 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 2 · 𝑏 ) ∈ ℂ ) | |
| 30 | 13 29 | mpan | ⊢ ( 𝑏 ∈ ℂ → ( 2 · 𝑏 ) ∈ ℂ ) |
| 31 | add4 | ⊢ ( ( ( ( 2 · 𝑎 ) ∈ ℂ ∧ ( 2 · 𝑏 ) ∈ ℂ ) ∧ ( 1 ∈ ℂ ∧ 1 ∈ ℂ ) ) → ( ( ( 2 · 𝑎 ) + ( 2 · 𝑏 ) ) + ( 1 + 1 ) ) = ( ( ( 2 · 𝑎 ) + 1 ) + ( ( 2 · 𝑏 ) + 1 ) ) ) | |
| 32 | 14 14 31 | mpanr12 | ⊢ ( ( ( 2 · 𝑎 ) ∈ ℂ ∧ ( 2 · 𝑏 ) ∈ ℂ ) → ( ( ( 2 · 𝑎 ) + ( 2 · 𝑏 ) ) + ( 1 + 1 ) ) = ( ( ( 2 · 𝑎 ) + 1 ) + ( ( 2 · 𝑏 ) + 1 ) ) ) |
| 33 | 28 30 32 | syl2an | ⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( ( ( 2 · 𝑎 ) + ( 2 · 𝑏 ) ) + ( 1 + 1 ) ) = ( ( ( 2 · 𝑎 ) + 1 ) + ( ( 2 · 𝑏 ) + 1 ) ) ) |
| 34 | 26 33 | eqtrd | ⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 2 · ( ( 𝑎 + 𝑏 ) + 1 ) ) = ( ( ( 2 · 𝑎 ) + 1 ) + ( ( 2 · 𝑏 ) + 1 ) ) ) |
| 35 | 10 11 34 | syl2an | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 2 · ( ( 𝑎 + 𝑏 ) + 1 ) ) = ( ( ( 2 · 𝑎 ) + 1 ) + ( ( 2 · 𝑏 ) + 1 ) ) ) |
| 36 | 9 35 | breqtrd | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 2 ∥ ( ( ( 2 · 𝑎 ) + 1 ) + ( ( 2 · 𝑏 ) + 1 ) ) ) |
| 37 | oveq12 | ⊢ ( ( ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) → ( ( ( 2 · 𝑎 ) + 1 ) + ( ( 2 · 𝑏 ) + 1 ) ) = ( 𝐴 + 𝐵 ) ) | |
| 38 | 37 | breq2d | ⊢ ( ( ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) → ( 2 ∥ ( ( ( 2 · 𝑎 ) + 1 ) + ( ( 2 · 𝑏 ) + 1 ) ) ↔ 2 ∥ ( 𝐴 + 𝐵 ) ) ) |
| 39 | 36 38 | syl5ibcom | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) → 2 ∥ ( 𝐴 + 𝐵 ) ) ) |
| 40 | 39 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) → 2 ∥ ( 𝐴 + 𝐵 ) ) |
| 41 | 4 40 | sylbir | ⊢ ( ( ∃ 𝑎 ∈ ℤ ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ∃ 𝑏 ∈ ℤ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) → 2 ∥ ( 𝐴 + 𝐵 ) ) |
| 42 | 3 41 | biimtrdi | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) → 2 ∥ ( 𝐴 + 𝐵 ) ) ) |
| 43 | 42 | imp | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → 2 ∥ ( 𝐴 + 𝐵 ) ) |
| 44 | 43 | an4s | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) ∧ ( 𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵 ) ) → 2 ∥ ( 𝐴 + 𝐵 ) ) |