This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcategory of a subcategory is a subcategory. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubc.d | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) | |
| Assertion | subsubc | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) ↔ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubc.d | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) | |
| 2 | id | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) → 𝐽 ∈ ( Subcat ‘ 𝐷 ) ) | |
| 3 | eqid | ⊢ ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐷 ) | |
| 4 | 2 3 | subcssc | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) → 𝐽 ⊆cat ( Homf ‘ 𝐷 ) ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 6 | subcrcl | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → 𝐶 ∈ Cat ) | |
| 7 | id | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) | |
| 8 | eqidd | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → dom dom 𝐻 = dom dom 𝐻 ) | |
| 9 | 7 8 | subcfn | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) ) |
| 10 | 7 9 5 | subcss1 | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → dom dom 𝐻 ⊆ ( Base ‘ 𝐶 ) ) |
| 11 | 1 5 6 9 10 | reschomf | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → 𝐻 = ( Homf ‘ 𝐷 ) ) |
| 12 | 11 | breq2d | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐽 ⊆cat 𝐻 ↔ 𝐽 ⊆cat ( Homf ‘ 𝐷 ) ) ) |
| 13 | 4 12 | imbitrrid | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) → 𝐽 ⊆cat 𝐻 ) ) |
| 14 | 13 | pm4.71rd | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ 𝐽 ∈ ( Subcat ‘ 𝐷 ) ) ) ) |
| 15 | simpr | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐽 ⊆cat 𝐻 ) | |
| 16 | simpl | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) | |
| 17 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 18 | 16 17 | subcssc | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐻 ⊆cat ( Homf ‘ 𝐶 ) ) |
| 19 | ssctr | ⊢ ( ( 𝐽 ⊆cat 𝐻 ∧ 𝐻 ⊆cat ( Homf ‘ 𝐶 ) ) → 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ) | |
| 20 | 15 18 19 | syl2anc | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ) |
| 21 | 12 | biimpa | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐽 ⊆cat ( Homf ‘ 𝐷 ) ) |
| 22 | 20 21 | 2thd | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ↔ 𝐽 ⊆cat ( Homf ‘ 𝐷 ) ) ) |
| 23 | 16 | adantr | ⊢ ( ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) ∧ 𝑥 ∈ dom dom 𝐽 ) → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |
| 24 | 9 | adantr | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) ∧ 𝑥 ∈ dom dom 𝐽 ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) ) |
| 26 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 27 | eqidd | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → dom dom 𝐽 = dom dom 𝐽 ) | |
| 28 | 15 27 | sscfn1 | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) ) |
| 29 | 28 24 15 | ssc1 | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → dom dom 𝐽 ⊆ dom dom 𝐻 ) |
| 30 | 29 | sselda | ⊢ ( ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) ∧ 𝑥 ∈ dom dom 𝐽 ) → 𝑥 ∈ dom dom 𝐻 ) |
| 31 | 1 23 25 26 30 | subcid | ⊢ ( ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) ∧ 𝑥 ∈ dom dom 𝐽 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) |
| 32 | 31 | eleq1d | ⊢ ( ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) ∧ 𝑥 ∈ dom dom 𝐽 ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
| 33 | 32 | ralbidva | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( ∀ 𝑥 ∈ dom dom 𝐽 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ∀ 𝑥 ∈ dom dom 𝐽 ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
| 34 | 1 | oveq1i | ⊢ ( 𝐷 ↾cat 𝐽 ) = ( ( 𝐶 ↾cat 𝐻 ) ↾cat 𝐽 ) |
| 35 | 6 | adantr | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐶 ∈ Cat ) |
| 36 | dmexg | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → dom 𝐻 ∈ V ) | |
| 37 | 36 | dmexd | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → dom dom 𝐻 ∈ V ) |
| 38 | 37 | adantr | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → dom dom 𝐻 ∈ V ) |
| 39 | 35 24 28 38 29 | rescabs | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( ( 𝐶 ↾cat 𝐻 ) ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) ) |
| 40 | 34 39 | eqtr2id | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( 𝐶 ↾cat 𝐽 ) = ( 𝐷 ↾cat 𝐽 ) ) |
| 41 | 40 | eleq1d | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( ( 𝐶 ↾cat 𝐽 ) ∈ Cat ↔ ( 𝐷 ↾cat 𝐽 ) ∈ Cat ) ) |
| 42 | 22 33 41 | 3anbi123d | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ dom dom 𝐽 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐷 ) ∧ ∀ 𝑥 ∈ dom dom 𝐽 ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐷 ↾cat 𝐽 ) ∈ Cat ) ) ) |
| 43 | eqid | ⊢ ( 𝐶 ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) | |
| 44 | 17 26 43 35 28 | issubc3 | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ dom dom 𝐽 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) ) |
| 45 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 46 | eqid | ⊢ ( 𝐷 ↾cat 𝐽 ) = ( 𝐷 ↾cat 𝐽 ) | |
| 47 | 1 7 | subccat | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → 𝐷 ∈ Cat ) |
| 48 | 47 | adantr | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐷 ∈ Cat ) |
| 49 | 3 45 46 48 28 | issubc3 | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐷 ) ∧ ∀ 𝑥 ∈ dom dom 𝐽 ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐷 ↾cat 𝐽 ) ∈ Cat ) ) ) |
| 50 | 42 44 49 | 3bitr4rd | ⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) ↔ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) ) |
| 51 | 50 | pm5.32da | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → ( ( 𝐽 ⊆cat 𝐻 ∧ 𝐽 ∈ ( Subcat ‘ 𝐷 ) ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) ) ) |
| 52 | 14 51 | bitrd | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) ) ) |
| 53 | 52 | biancomd | ⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) ↔ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) ) ) |