This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subcategory subset relation is transitive. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssctr | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐴 ⊆cat 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐴 ⊆cat 𝐵 ) | |
| 2 | eqidd | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐴 = dom dom 𝐴 ) | |
| 3 | 1 2 | sscfn1 | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐴 Fn ( dom dom 𝐴 × dom dom 𝐴 ) ) |
| 4 | eqidd | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐵 = dom dom 𝐵 ) | |
| 5 | 1 4 | sscfn2 | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐵 Fn ( dom dom 𝐵 × dom dom 𝐵 ) ) |
| 6 | 3 5 1 | ssc1 | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐴 ⊆ dom dom 𝐵 ) |
| 7 | simpr | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐵 ⊆cat 𝐶 ) | |
| 8 | eqidd | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐶 = dom dom 𝐶 ) | |
| 9 | 7 8 | sscfn2 | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐶 Fn ( dom dom 𝐶 × dom dom 𝐶 ) ) |
| 10 | 5 9 7 | ssc1 | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐵 ⊆ dom dom 𝐶 ) |
| 11 | 6 10 | sstrd | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐴 ⊆ dom dom 𝐶 ) |
| 12 | 3 | adantr | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐴 Fn ( dom dom 𝐴 × dom dom 𝐴 ) ) |
| 13 | 1 | adantr | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐴 ⊆cat 𝐵 ) |
| 14 | simprl | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑥 ∈ dom dom 𝐴 ) | |
| 15 | simprr | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑦 ∈ dom dom 𝐴 ) | |
| 16 | 12 13 14 15 | ssc2 | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → ( 𝑥 𝐴 𝑦 ) ⊆ ( 𝑥 𝐵 𝑦 ) ) |
| 17 | 5 | adantr | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐵 Fn ( dom dom 𝐵 × dom dom 𝐵 ) ) |
| 18 | 7 | adantr | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐵 ⊆cat 𝐶 ) |
| 19 | 6 | adantr | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → dom dom 𝐴 ⊆ dom dom 𝐵 ) |
| 20 | 19 14 | sseldd | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑥 ∈ dom dom 𝐵 ) |
| 21 | 19 15 | sseldd | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑦 ∈ dom dom 𝐵 ) |
| 22 | 17 18 20 21 | ssc2 | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → ( 𝑥 𝐵 𝑦 ) ⊆ ( 𝑥 𝐶 𝑦 ) ) |
| 23 | 16 22 | sstrd | ⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → ( 𝑥 𝐴 𝑦 ) ⊆ ( 𝑥 𝐶 𝑦 ) ) |
| 24 | 23 | ralrimivva | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → ∀ 𝑥 ∈ dom dom 𝐴 ∀ 𝑦 ∈ dom dom 𝐴 ( 𝑥 𝐴 𝑦 ) ⊆ ( 𝑥 𝐶 𝑦 ) ) |
| 25 | sscrel | ⊢ Rel ⊆cat | |
| 26 | 25 | brrelex2i | ⊢ ( 𝐵 ⊆cat 𝐶 → 𝐶 ∈ V ) |
| 27 | 26 | adantl | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐶 ∈ V ) |
| 28 | dmexg | ⊢ ( 𝐶 ∈ V → dom 𝐶 ∈ V ) | |
| 29 | dmexg | ⊢ ( dom 𝐶 ∈ V → dom dom 𝐶 ∈ V ) | |
| 30 | 27 28 29 | 3syl | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐶 ∈ V ) |
| 31 | 3 9 30 | isssc | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → ( 𝐴 ⊆cat 𝐶 ↔ ( dom dom 𝐴 ⊆ dom dom 𝐶 ∧ ∀ 𝑥 ∈ dom dom 𝐴 ∀ 𝑦 ∈ dom dom 𝐴 ( 𝑥 𝐴 𝑦 ) ⊆ ( 𝑥 𝐶 𝑦 ) ) ) ) |
| 32 | 11 24 31 | mpbir2and | ⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐴 ⊆cat 𝐶 ) |