This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcategory of a subcategory is a subcategory. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubc.d | |- D = ( C |`cat H ) |
|
| Assertion | subsubc | |- ( H e. ( Subcat ` C ) -> ( J e. ( Subcat ` D ) <-> ( J e. ( Subcat ` C ) /\ J C_cat H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubc.d | |- D = ( C |`cat H ) |
|
| 2 | id | |- ( J e. ( Subcat ` D ) -> J e. ( Subcat ` D ) ) |
|
| 3 | eqid | |- ( Homf ` D ) = ( Homf ` D ) |
|
| 4 | 2 3 | subcssc | |- ( J e. ( Subcat ` D ) -> J C_cat ( Homf ` D ) ) |
| 5 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 6 | subcrcl | |- ( H e. ( Subcat ` C ) -> C e. Cat ) |
|
| 7 | id | |- ( H e. ( Subcat ` C ) -> H e. ( Subcat ` C ) ) |
|
| 8 | eqidd | |- ( H e. ( Subcat ` C ) -> dom dom H = dom dom H ) |
|
| 9 | 7 8 | subcfn | |- ( H e. ( Subcat ` C ) -> H Fn ( dom dom H X. dom dom H ) ) |
| 10 | 7 9 5 | subcss1 | |- ( H e. ( Subcat ` C ) -> dom dom H C_ ( Base ` C ) ) |
| 11 | 1 5 6 9 10 | reschomf | |- ( H e. ( Subcat ` C ) -> H = ( Homf ` D ) ) |
| 12 | 11 | breq2d | |- ( H e. ( Subcat ` C ) -> ( J C_cat H <-> J C_cat ( Homf ` D ) ) ) |
| 13 | 4 12 | imbitrrid | |- ( H e. ( Subcat ` C ) -> ( J e. ( Subcat ` D ) -> J C_cat H ) ) |
| 14 | 13 | pm4.71rd | |- ( H e. ( Subcat ` C ) -> ( J e. ( Subcat ` D ) <-> ( J C_cat H /\ J e. ( Subcat ` D ) ) ) ) |
| 15 | simpr | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> J C_cat H ) |
|
| 16 | simpl | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> H e. ( Subcat ` C ) ) |
|
| 17 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 18 | 16 17 | subcssc | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> H C_cat ( Homf ` C ) ) |
| 19 | ssctr | |- ( ( J C_cat H /\ H C_cat ( Homf ` C ) ) -> J C_cat ( Homf ` C ) ) |
|
| 20 | 15 18 19 | syl2anc | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> J C_cat ( Homf ` C ) ) |
| 21 | 12 | biimpa | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> J C_cat ( Homf ` D ) ) |
| 22 | 20 21 | 2thd | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( J C_cat ( Homf ` C ) <-> J C_cat ( Homf ` D ) ) ) |
| 23 | 16 | adantr | |- ( ( ( H e. ( Subcat ` C ) /\ J C_cat H ) /\ x e. dom dom J ) -> H e. ( Subcat ` C ) ) |
| 24 | 9 | adantr | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> H Fn ( dom dom H X. dom dom H ) ) |
| 25 | 24 | adantr | |- ( ( ( H e. ( Subcat ` C ) /\ J C_cat H ) /\ x e. dom dom J ) -> H Fn ( dom dom H X. dom dom H ) ) |
| 26 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 27 | eqidd | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> dom dom J = dom dom J ) |
|
| 28 | 15 27 | sscfn1 | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> J Fn ( dom dom J X. dom dom J ) ) |
| 29 | 28 24 15 | ssc1 | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> dom dom J C_ dom dom H ) |
| 30 | 29 | sselda | |- ( ( ( H e. ( Subcat ` C ) /\ J C_cat H ) /\ x e. dom dom J ) -> x e. dom dom H ) |
| 31 | 1 23 25 26 30 | subcid | |- ( ( ( H e. ( Subcat ` C ) /\ J C_cat H ) /\ x e. dom dom J ) -> ( ( Id ` C ) ` x ) = ( ( Id ` D ) ` x ) ) |
| 32 | 31 | eleq1d | |- ( ( ( H e. ( Subcat ` C ) /\ J C_cat H ) /\ x e. dom dom J ) -> ( ( ( Id ` C ) ` x ) e. ( x J x ) <-> ( ( Id ` D ) ` x ) e. ( x J x ) ) ) |
| 33 | 32 | ralbidva | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( A. x e. dom dom J ( ( Id ` C ) ` x ) e. ( x J x ) <-> A. x e. dom dom J ( ( Id ` D ) ` x ) e. ( x J x ) ) ) |
| 34 | 1 | oveq1i | |- ( D |`cat J ) = ( ( C |`cat H ) |`cat J ) |
| 35 | 6 | adantr | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> C e. Cat ) |
| 36 | dmexg | |- ( H e. ( Subcat ` C ) -> dom H e. _V ) |
|
| 37 | 36 | dmexd | |- ( H e. ( Subcat ` C ) -> dom dom H e. _V ) |
| 38 | 37 | adantr | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> dom dom H e. _V ) |
| 39 | 35 24 28 38 29 | rescabs | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( ( C |`cat H ) |`cat J ) = ( C |`cat J ) ) |
| 40 | 34 39 | eqtr2id | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( C |`cat J ) = ( D |`cat J ) ) |
| 41 | 40 | eleq1d | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( ( C |`cat J ) e. Cat <-> ( D |`cat J ) e. Cat ) ) |
| 42 | 22 33 41 | 3anbi123d | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( ( J C_cat ( Homf ` C ) /\ A. x e. dom dom J ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) <-> ( J C_cat ( Homf ` D ) /\ A. x e. dom dom J ( ( Id ` D ) ` x ) e. ( x J x ) /\ ( D |`cat J ) e. Cat ) ) ) |
| 43 | eqid | |- ( C |`cat J ) = ( C |`cat J ) |
|
| 44 | 17 26 43 35 28 | issubc3 | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( J e. ( Subcat ` C ) <-> ( J C_cat ( Homf ` C ) /\ A. x e. dom dom J ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) ) ) |
| 45 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 46 | eqid | |- ( D |`cat J ) = ( D |`cat J ) |
|
| 47 | 1 7 | subccat | |- ( H e. ( Subcat ` C ) -> D e. Cat ) |
| 48 | 47 | adantr | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> D e. Cat ) |
| 49 | 3 45 46 48 28 | issubc3 | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( J e. ( Subcat ` D ) <-> ( J C_cat ( Homf ` D ) /\ A. x e. dom dom J ( ( Id ` D ) ` x ) e. ( x J x ) /\ ( D |`cat J ) e. Cat ) ) ) |
| 50 | 42 44 49 | 3bitr4rd | |- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( J e. ( Subcat ` D ) <-> J e. ( Subcat ` C ) ) ) |
| 51 | 50 | pm5.32da | |- ( H e. ( Subcat ` C ) -> ( ( J C_cat H /\ J e. ( Subcat ` D ) ) <-> ( J C_cat H /\ J e. ( Subcat ` C ) ) ) ) |
| 52 | 14 51 | bitrd | |- ( H e. ( Subcat ` C ) -> ( J e. ( Subcat ` D ) <-> ( J C_cat H /\ J e. ( Subcat ` C ) ) ) ) |
| 53 | 52 | biancomd | |- ( H e. ( Subcat ` C ) -> ( J e. ( Subcat ` D ) <-> ( J e. ( Subcat ` C ) /\ J C_cat H ) ) ) |