This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sscfn1.1 | ⊢ ( 𝜑 → 𝐻 ⊆cat 𝐽 ) | |
| sscfn1.2 | ⊢ ( 𝜑 → 𝑆 = dom dom 𝐻 ) | ||
| Assertion | sscfn1 | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscfn1.1 | ⊢ ( 𝜑 → 𝐻 ⊆cat 𝐽 ) | |
| 2 | sscfn1.2 | ⊢ ( 𝜑 → 𝑆 = dom dom 𝐻 ) | |
| 3 | brssc | ⊢ ( 𝐻 ⊆cat 𝐽 ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) | |
| 4 | 1 3 | sylib | ⊢ ( 𝜑 → ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) |
| 5 | ixpfn | ⊢ ( 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) → 𝐻 Fn ( 𝑠 × 𝑠 ) ) | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → 𝐻 Fn ( 𝑠 × 𝑠 ) ) | |
| 7 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → 𝑆 = dom dom 𝐻 ) |
| 8 | fndm | ⊢ ( 𝐻 Fn ( 𝑠 × 𝑠 ) → dom 𝐻 = ( 𝑠 × 𝑠 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → dom 𝐻 = ( 𝑠 × 𝑠 ) ) |
| 10 | 9 | dmeqd | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → dom dom 𝐻 = dom ( 𝑠 × 𝑠 ) ) |
| 11 | dmxpid | ⊢ dom ( 𝑠 × 𝑠 ) = 𝑠 | |
| 12 | 10 11 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → dom dom 𝐻 = 𝑠 ) |
| 13 | 7 12 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → 𝑠 = 𝑆 ) |
| 14 | 13 | sqxpeqd | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → ( 𝑠 × 𝑠 ) = ( 𝑆 × 𝑆 ) ) |
| 15 | 14 | fneq2d | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → ( 𝐻 Fn ( 𝑠 × 𝑠 ) ↔ 𝐻 Fn ( 𝑆 × 𝑆 ) ) ) |
| 16 | 6 15 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐻 Fn ( 𝑠 × 𝑠 ) ) → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
| 17 | 16 | ex | ⊢ ( 𝜑 → ( 𝐻 Fn ( 𝑠 × 𝑠 ) → 𝐻 Fn ( 𝑆 × 𝑆 ) ) ) |
| 18 | 5 17 | syl5 | ⊢ ( 𝜑 → ( 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) → 𝐻 Fn ( 𝑆 × 𝑆 ) ) ) |
| 19 | 18 | rexlimdvw | ⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) → 𝐻 Fn ( 𝑆 × 𝑆 ) ) ) |
| 20 | 19 | adantld | ⊢ ( 𝜑 → ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → 𝐻 Fn ( 𝑆 × 𝑆 ) ) ) |
| 21 | 20 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → 𝐻 Fn ( 𝑆 × 𝑆 ) ) ) |
| 22 | 4 21 | mpd | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |