This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element in the set of subcategories is a binary function. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subcixp.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| subcfn.2 | ⊢ ( 𝜑 → 𝑆 = dom dom 𝐽 ) | ||
| Assertion | subcfn | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcixp.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| 2 | subcfn.2 | ⊢ ( 𝜑 → 𝑆 = dom dom 𝐽 ) | |
| 3 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 4 | 1 3 | subcssc | ⊢ ( 𝜑 → 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ) |
| 5 | 4 2 | sscfn1 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |