This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a subcategory, as a subset of the category which is itself a category. The assumption that the identity be closed is necessary just as in the case of a monoid, issubm2 , for the same reasons, since categories are a generalization of monoids. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubc3.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | |
| issubc3.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| issubc3.1 | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) | ||
| issubc3.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| issubc3.a | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) | ||
| Assertion | issubc3 | ⊢ ( 𝜑 → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ 𝐷 ∈ Cat ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubc3.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | |
| 2 | issubc3.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 3 | issubc3.1 | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) | |
| 4 | issubc3.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | issubc3.a | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| 7 | 6 1 | subcssc | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) → 𝐽 ⊆cat 𝐻 ) |
| 8 | 6 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
| 9 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| 10 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) | |
| 11 | 8 9 10 2 | subcidcl | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 12 | 11 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) → ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 13 | 3 6 | subccat | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) → 𝐷 ∈ Cat ) |
| 14 | 7 12 13 | 3jca | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) → ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ 𝐷 ∈ Cat ) ) |
| 15 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ 𝐷 ∈ Cat ) ) → 𝐽 ⊆cat 𝐻 ) | |
| 16 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ 𝐷 ∈ Cat ) ) → ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) | |
| 17 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 18 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 19 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 20 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝐷 ∈ Cat ) | |
| 21 | simprl1 | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑥 ∈ 𝑆 ) | |
| 22 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 23 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝐶 ∈ Cat ) |
| 24 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| 25 | 1 22 | homffn | ⊢ 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 26 | 25 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 27 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝐽 ⊆cat 𝐻 ) | |
| 28 | 24 26 27 | ssc1 | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑆 ⊆ ( Base ‘ 𝐶 ) ) |
| 29 | 3 22 23 24 28 | rescbas | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑆 = ( Base ‘ 𝐷 ) ) |
| 30 | 21 29 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) |
| 31 | simprl2 | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑦 ∈ 𝑆 ) | |
| 32 | 31 29 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 33 | simprl3 | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑧 ∈ 𝑆 ) | |
| 34 | 33 29 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑧 ∈ ( Base ‘ 𝐷 ) ) |
| 35 | simprrl | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ) | |
| 36 | 3 22 23 24 28 | reschom | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝐽 = ( Hom ‘ 𝐷 ) ) |
| 37 | 36 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( 𝑥 𝐽 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 38 | 35 37 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 39 | simprrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) | |
| 40 | 36 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( 𝑦 𝐽 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 41 | 39 40 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 42 | 17 18 19 20 30 32 34 38 41 | catcocl | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 43 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 44 | 3 22 23 24 28 43 | rescco | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐷 ) ) |
| 45 | 44 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) ) |
| 46 | 45 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) |
| 47 | 36 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( 𝑥 𝐽 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 48 | 42 46 47 | 3eltr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) |
| 49 | 48 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) |
| 50 | 49 | ralrimivva | ⊢ ( ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) |
| 51 | 50 | ralrimivvva | ⊢ ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ 𝐷 ∈ Cat ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) |
| 52 | 51 | 3adantr2 | ⊢ ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ 𝐷 ∈ Cat ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) |
| 53 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ↔ ( ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) | |
| 54 | 16 52 53 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ 𝐷 ∈ Cat ) ) → ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 55 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ 𝐷 ∈ Cat ) ) → 𝐶 ∈ Cat ) |
| 56 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ 𝐷 ∈ Cat ) ) → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| 57 | 1 2 43 55 56 | issubc2 | ⊢ ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ 𝐷 ∈ Cat ) ) → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 58 | 15 54 57 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ 𝐷 ∈ Cat ) ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
| 59 | 14 58 | impbida | ⊢ ( 𝜑 → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ 𝐷 ∈ Cat ) ) ) |