This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity in a subcategory is the same as the original category. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subccat.1 | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) | |
| subccat.j | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | ||
| subccatid.1 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) | ||
| subccatid.2 | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| subcid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | ||
| Assertion | subcid | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subccat.1 | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) | |
| 2 | subccat.j | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| 3 | subccatid.1 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) | |
| 4 | subccatid.2 | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 5 | subcid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | |
| 6 | 1 2 3 4 | subccatid | ⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ ( Id ‘ 𝐷 ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 ‘ 𝑥 ) ) ) ) |
| 7 | 6 | simprd | ⊢ ( 𝜑 → ( Id ‘ 𝐷 ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 ‘ 𝑥 ) ) ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) | |
| 9 | 8 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 1 ‘ 𝑥 ) = ( 1 ‘ 𝑋 ) ) |
| 10 | fvexd | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) ∈ V ) | |
| 11 | 7 9 5 10 | fvmptd | ⊢ ( 𝜑 → ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) = ( 1 ‘ 𝑋 ) ) |
| 12 | 11 | eqcomd | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) |