This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isssc.1 | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| isssc.2 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) | ||
| ssc1.3 | ⊢ ( 𝜑 → 𝐻 ⊆cat 𝐽 ) | ||
| Assertion | ssc1 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isssc.1 | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| 2 | isssc.2 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) | |
| 3 | ssc1.3 | ⊢ ( 𝜑 → 𝐻 ⊆cat 𝐽 ) | |
| 4 | sscrel | ⊢ Rel ⊆cat | |
| 5 | 4 | brrelex2i | ⊢ ( 𝐻 ⊆cat 𝐽 → 𝐽 ∈ V ) |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 7 | 2 | ssclem | ⊢ ( 𝜑 → ( 𝐽 ∈ V ↔ 𝑇 ∈ V ) ) |
| 8 | 6 7 | mpbid | ⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 9 | 1 2 8 | isssc | ⊢ ( 𝜑 → ( 𝐻 ⊆cat 𝐽 ↔ ( 𝑆 ⊆ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) ) |
| 10 | 3 9 | mpbid | ⊢ ( 𝜑 → ( 𝑆 ⊆ 𝑇 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐻 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) |
| 11 | 10 | simpld | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑇 ) |