This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitinvcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unitinvcl.2 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| unitinvcl.3 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| unitinvcl.4 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | unitrinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitinvcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unitinvcl.2 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 3 | unitinvcl.3 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | unitinvcl.4 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | |
| 6 | 1 5 | unitgrp | ⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ) |
| 7 | 1 5 | unitgrpbas | ⊢ 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 8 | 1 | fvexi | ⊢ 𝑈 ∈ V |
| 9 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 10 | 9 3 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 11 | 5 10 | ressplusg | ⊢ ( 𝑈 ∈ V → · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) |
| 12 | 8 11 | ax-mp | ⊢ · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 13 | eqid | ⊢ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) | |
| 14 | 1 5 2 | invrfval | ⊢ 𝐼 = ( invg ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 15 | 7 12 13 14 | grprinv | ⊢ ( ( ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) |
| 16 | 6 15 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) |
| 17 | 1 5 4 | unitgrpid | ⊢ ( 𝑅 ∈ Ring → 1 = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → 1 = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) |
| 19 | 16 18 | eqtr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) |