This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrguss.1 | |- S = ( R |`s A ) |
|
| subrguss.2 | |- U = ( Unit ` R ) |
||
| subrguss.3 | |- V = ( Unit ` S ) |
||
| Assertion | subrguss | |- ( A e. ( SubRing ` R ) -> V C_ U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrguss.1 | |- S = ( R |`s A ) |
|
| 2 | subrguss.2 | |- U = ( Unit ` R ) |
|
| 3 | subrguss.3 | |- V = ( Unit ` S ) |
|
| 4 | simpr | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x e. V ) |
|
| 5 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 6 | eqid | |- ( ||r ` S ) = ( ||r ` S ) |
|
| 7 | eqid | |- ( oppR ` S ) = ( oppR ` S ) |
|
| 8 | eqid | |- ( ||r ` ( oppR ` S ) ) = ( ||r ` ( oppR ` S ) ) |
|
| 9 | 3 5 6 7 8 | isunit | |- ( x e. V <-> ( x ( ||r ` S ) ( 1r ` S ) /\ x ( ||r ` ( oppR ` S ) ) ( 1r ` S ) ) ) |
| 10 | 4 9 | sylib | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( x ( ||r ` S ) ( 1r ` S ) /\ x ( ||r ` ( oppR ` S ) ) ( 1r ` S ) ) ) |
| 11 | 10 | simpld | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x ( ||r ` S ) ( 1r ` S ) ) |
| 12 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 13 | 1 12 | subrg1 | |- ( A e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` S ) ) |
| 14 | 13 | adantr | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( 1r ` R ) = ( 1r ` S ) ) |
| 15 | 11 14 | breqtrrd | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x ( ||r ` S ) ( 1r ` R ) ) |
| 16 | eqid | |- ( ||r ` R ) = ( ||r ` R ) |
|
| 17 | 1 16 6 | subrgdvds | |- ( A e. ( SubRing ` R ) -> ( ||r ` S ) C_ ( ||r ` R ) ) |
| 18 | 17 | adantr | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ||r ` S ) C_ ( ||r ` R ) ) |
| 19 | 18 | ssbrd | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( x ( ||r ` S ) ( 1r ` R ) -> x ( ||r ` R ) ( 1r ` R ) ) ) |
| 20 | 15 19 | mpd | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x ( ||r ` R ) ( 1r ` R ) ) |
| 21 | 1 | subrgbas | |- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
| 22 | 21 | adantr | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> A = ( Base ` S ) ) |
| 23 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 24 | 23 | subrgss | |- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 25 | 24 | adantr | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> A C_ ( Base ` R ) ) |
| 26 | 22 25 | eqsstrrd | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( Base ` S ) C_ ( Base ` R ) ) |
| 27 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 28 | 27 3 | unitcl | |- ( x e. V -> x e. ( Base ` S ) ) |
| 29 | 28 | adantl | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x e. ( Base ` S ) ) |
| 30 | 26 29 | sseldd | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x e. ( Base ` R ) ) |
| 31 | 1 | subrgring | |- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 32 | eqid | |- ( invr ` S ) = ( invr ` S ) |
|
| 33 | 3 32 27 | ringinvcl | |- ( ( S e. Ring /\ x e. V ) -> ( ( invr ` S ) ` x ) e. ( Base ` S ) ) |
| 34 | 31 33 | sylan | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( invr ` S ) ` x ) e. ( Base ` S ) ) |
| 35 | 26 34 | sseldd | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( invr ` S ) ` x ) e. ( Base ` R ) ) |
| 36 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 37 | 36 23 | opprbas | |- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 38 | eqid | |- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
|
| 39 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 40 | 37 38 39 | dvdsrmul | |- ( ( x e. ( Base ` R ) /\ ( ( invr ` S ) ` x ) e. ( Base ` R ) ) -> x ( ||r ` ( oppR ` R ) ) ( ( ( invr ` S ) ` x ) ( .r ` ( oppR ` R ) ) x ) ) |
| 41 | 30 35 40 | syl2anc | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x ( ||r ` ( oppR ` R ) ) ( ( ( invr ` S ) ` x ) ( .r ` ( oppR ` R ) ) x ) ) |
| 42 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 43 | 23 42 36 39 | opprmul | |- ( ( ( invr ` S ) ` x ) ( .r ` ( oppR ` R ) ) x ) = ( x ( .r ` R ) ( ( invr ` S ) ` x ) ) |
| 44 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 45 | 3 32 44 5 | unitrinv | |- ( ( S e. Ring /\ x e. V ) -> ( x ( .r ` S ) ( ( invr ` S ) ` x ) ) = ( 1r ` S ) ) |
| 46 | 31 45 | sylan | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( x ( .r ` S ) ( ( invr ` S ) ` x ) ) = ( 1r ` S ) ) |
| 47 | 1 42 | ressmulr | |- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
| 48 | 47 | adantr | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( .r ` R ) = ( .r ` S ) ) |
| 49 | 48 | oveqd | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( x ( .r ` R ) ( ( invr ` S ) ` x ) ) = ( x ( .r ` S ) ( ( invr ` S ) ` x ) ) ) |
| 50 | 46 49 14 | 3eqtr4d | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( x ( .r ` R ) ( ( invr ` S ) ` x ) ) = ( 1r ` R ) ) |
| 51 | 43 50 | eqtrid | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( ( invr ` S ) ` x ) ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) |
| 52 | 41 51 | breqtrd | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 53 | 2 12 16 36 38 | isunit | |- ( x e. U <-> ( x ( ||r ` R ) ( 1r ` R ) /\ x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 54 | 20 52 53 | sylanbrc | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x e. U ) |
| 55 | 54 | ex | |- ( A e. ( SubRing ` R ) -> ( x e. V -> x e. U ) ) |
| 56 | 55 | ssrdv | |- ( A e. ( SubRing ` R ) -> V C_ U ) |