This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgdvds.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| subrgdvds.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| subrgdvds.3 | ⊢ 𝐸 = ( ∥r ‘ 𝑆 ) | ||
| Assertion | subrgdvds | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐸 ⊆ ∥ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgdvds.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | subrgdvds.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | subrgdvds.3 | ⊢ 𝐸 = ( ∥r ‘ 𝑆 ) | |
| 4 | 3 | reldvdsr | ⊢ Rel 𝐸 |
| 5 | 4 | a1i | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → Rel 𝐸 ) |
| 6 | 1 | subrgbas | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 7 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 8 | 7 | subrgss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 9 | 6 8 | eqsstrrd | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 10 | 9 | sseld | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥 ∈ ( Base ‘ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
| 11 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 12 | 1 11 | ressmulr | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 13 | 12 | oveqd | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 ) ) |
| 14 | 13 | eqeq1d | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ↔ ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑦 ) ) |
| 15 | 14 | rexbidv | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ↔ ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑦 ) ) |
| 16 | ssrexv | ⊢ ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) → ( ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 → ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) | |
| 17 | 9 16 | syl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 → ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
| 18 | 15 17 | sylbird | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑦 → ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
| 19 | 10 18 | anim12d | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑦 ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ) |
| 20 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 21 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 22 | 20 3 21 | dvdsr | ⊢ ( 𝑥 𝐸 𝑦 ↔ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑦 ) ) |
| 23 | 7 2 11 | dvdsr | ⊢ ( 𝑥 ∥ 𝑦 ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
| 24 | 19 22 23 | 3imtr4g | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥 𝐸 𝑦 → 𝑥 ∥ 𝑦 ) ) |
| 25 | df-br | ⊢ ( 𝑥 𝐸 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐸 ) | |
| 26 | df-br | ⊢ ( 𝑥 ∥ 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ∥ ) | |
| 27 | 24 25 26 | 3imtr3g | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐸 → 〈 𝑥 , 𝑦 〉 ∈ ∥ ) ) |
| 28 | 5 27 | relssdv | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐸 ⊆ ∥ ) |