This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgugrp.1 | |- S = ( R |`s A ) |
|
| subrgugrp.2 | |- U = ( Unit ` R ) |
||
| subrgugrp.3 | |- V = ( Unit ` S ) |
||
| subrgunit.4 | |- I = ( invr ` R ) |
||
| Assertion | subrgunit | |- ( A e. ( SubRing ` R ) -> ( X e. V <-> ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgugrp.1 | |- S = ( R |`s A ) |
|
| 2 | subrgugrp.2 | |- U = ( Unit ` R ) |
|
| 3 | subrgugrp.3 | |- V = ( Unit ` S ) |
|
| 4 | subrgunit.4 | |- I = ( invr ` R ) |
|
| 5 | 1 2 3 | subrguss | |- ( A e. ( SubRing ` R ) -> V C_ U ) |
| 6 | 5 | sselda | |- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> X e. U ) |
| 7 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 8 | 7 3 | unitcl | |- ( X e. V -> X e. ( Base ` S ) ) |
| 9 | 8 | adantl | |- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> X e. ( Base ` S ) ) |
| 10 | 1 | subrgbas | |- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
| 11 | 10 | adantr | |- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> A = ( Base ` S ) ) |
| 12 | 9 11 | eleqtrrd | |- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> X e. A ) |
| 13 | 1 | subrgring | |- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 14 | eqid | |- ( invr ` S ) = ( invr ` S ) |
|
| 15 | 3 14 7 | ringinvcl | |- ( ( S e. Ring /\ X e. V ) -> ( ( invr ` S ) ` X ) e. ( Base ` S ) ) |
| 16 | 13 15 | sylan | |- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> ( ( invr ` S ) ` X ) e. ( Base ` S ) ) |
| 17 | 1 4 3 14 | subrginv | |- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> ( I ` X ) = ( ( invr ` S ) ` X ) ) |
| 18 | 16 17 11 | 3eltr4d | |- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> ( I ` X ) e. A ) |
| 19 | 6 12 18 | 3jca | |- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) |
| 20 | simpr2 | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X e. A ) |
|
| 21 | 10 | adantr | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> A = ( Base ` S ) ) |
| 22 | 20 21 | eleqtrd | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X e. ( Base ` S ) ) |
| 23 | simpr3 | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( I ` X ) e. A ) |
|
| 24 | 23 21 | eleqtrd | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( I ` X ) e. ( Base ` S ) ) |
| 25 | eqid | |- ( ||r ` S ) = ( ||r ` S ) |
|
| 26 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 27 | 7 25 26 | dvdsrmul | |- ( ( X e. ( Base ` S ) /\ ( I ` X ) e. ( Base ` S ) ) -> X ( ||r ` S ) ( ( I ` X ) ( .r ` S ) X ) ) |
| 28 | 22 24 27 | syl2anc | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X ( ||r ` S ) ( ( I ` X ) ( .r ` S ) X ) ) |
| 29 | subrgrcl | |- ( A e. ( SubRing ` R ) -> R e. Ring ) |
|
| 30 | 29 | adantr | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> R e. Ring ) |
| 31 | simpr1 | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X e. U ) |
|
| 32 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 33 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 34 | 2 4 32 33 | unitlinv | |- ( ( R e. Ring /\ X e. U ) -> ( ( I ` X ) ( .r ` R ) X ) = ( 1r ` R ) ) |
| 35 | 30 31 34 | syl2anc | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( ( I ` X ) ( .r ` R ) X ) = ( 1r ` R ) ) |
| 36 | 1 32 | ressmulr | |- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
| 37 | 36 | adantr | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( .r ` R ) = ( .r ` S ) ) |
| 38 | 37 | oveqd | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( ( I ` X ) ( .r ` R ) X ) = ( ( I ` X ) ( .r ` S ) X ) ) |
| 39 | 1 33 | subrg1 | |- ( A e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` S ) ) |
| 40 | 39 | adantr | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( 1r ` R ) = ( 1r ` S ) ) |
| 41 | 35 38 40 | 3eqtr3d | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( ( I ` X ) ( .r ` S ) X ) = ( 1r ` S ) ) |
| 42 | 28 41 | breqtrd | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X ( ||r ` S ) ( 1r ` S ) ) |
| 43 | eqid | |- ( oppR ` S ) = ( oppR ` S ) |
|
| 44 | 43 7 | opprbas | |- ( Base ` S ) = ( Base ` ( oppR ` S ) ) |
| 45 | eqid | |- ( ||r ` ( oppR ` S ) ) = ( ||r ` ( oppR ` S ) ) |
|
| 46 | eqid | |- ( .r ` ( oppR ` S ) ) = ( .r ` ( oppR ` S ) ) |
|
| 47 | 44 45 46 | dvdsrmul | |- ( ( X e. ( Base ` S ) /\ ( I ` X ) e. ( Base ` S ) ) -> X ( ||r ` ( oppR ` S ) ) ( ( I ` X ) ( .r ` ( oppR ` S ) ) X ) ) |
| 48 | 22 24 47 | syl2anc | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X ( ||r ` ( oppR ` S ) ) ( ( I ` X ) ( .r ` ( oppR ` S ) ) X ) ) |
| 49 | 7 26 43 46 | opprmul | |- ( ( I ` X ) ( .r ` ( oppR ` S ) ) X ) = ( X ( .r ` S ) ( I ` X ) ) |
| 50 | 2 4 32 33 | unitrinv | |- ( ( R e. Ring /\ X e. U ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
| 51 | 30 31 50 | syl2anc | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
| 52 | 37 | oveqd | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( X ( .r ` R ) ( I ` X ) ) = ( X ( .r ` S ) ( I ` X ) ) ) |
| 53 | 51 52 40 | 3eqtr3d | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( X ( .r ` S ) ( I ` X ) ) = ( 1r ` S ) ) |
| 54 | 49 53 | eqtrid | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( ( I ` X ) ( .r ` ( oppR ` S ) ) X ) = ( 1r ` S ) ) |
| 55 | 48 54 | breqtrd | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X ( ||r ` ( oppR ` S ) ) ( 1r ` S ) ) |
| 56 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 57 | 3 56 25 43 45 | isunit | |- ( X e. V <-> ( X ( ||r ` S ) ( 1r ` S ) /\ X ( ||r ` ( oppR ` S ) ) ( 1r ` S ) ) ) |
| 58 | 42 55 57 | sylanbrc | |- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X e. V ) |
| 59 | 19 58 | impbida | |- ( A e. ( SubRing ` R ) -> ( X e. V <-> ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) ) |