This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgtgp.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| Assertion | subgtgp | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgtgp.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 2 | 1 | subggrp | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Grp ) |
| 4 | tgptmd | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd ) | |
| 5 | subgsubm | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 6 | 1 | submtmd | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝐻 ∈ TopMnd ) |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ TopMnd ) |
| 8 | 1 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 10 | 9 | mpteq1d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑆 ↦ ( ( invg ‘ 𝐻 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐻 ) ↦ ( ( invg ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 11 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 12 | eqid | ⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) | |
| 13 | 1 11 12 | subginv | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑥 ) ) |
| 14 | 13 | adantll | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑥 ) ) |
| 15 | 14 | mpteq2dva | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑆 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( invg ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 16 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 17 | 16 12 | grpinvf | ⊢ ( 𝐻 ∈ Grp → ( invg ‘ 𝐻 ) : ( Base ‘ 𝐻 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 18 | 3 17 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐻 ) : ( Base ‘ 𝐻 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 19 | 18 | feqmptd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐻 ) = ( 𝑥 ∈ ( Base ‘ 𝐻 ) ↦ ( ( invg ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 20 | 10 15 19 | 3eqtr4rd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐻 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 21 | eqid | ⊢ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) = ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) | |
| 22 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 23 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 24 | 22 23 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 26 | 23 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 28 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 ∈ Grp ) |
| 30 | 23 11 | grpinvf | ⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 31 | 29 30 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 32 | 31 | feqmptd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 33 | 22 11 | tgpinv | ⊢ ( 𝐺 ∈ TopGrp → ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 35 | 32 34 | eqeltrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 36 | 21 25 27 35 | cnmpt1res | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑆 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 37 | 20 36 | eqeltrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 38 | 18 | frnd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ran ( invg ‘ 𝐻 ) ⊆ ( Base ‘ 𝐻 ) ) |
| 39 | 38 9 | sseqtrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ran ( invg ‘ 𝐻 ) ⊆ 𝑆 ) |
| 40 | cnrest2 | ⊢ ( ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ran ( invg ‘ 𝐻 ) ⊆ 𝑆 ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( TopOpen ‘ 𝐺 ) ) ↔ ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) ) | |
| 41 | 25 39 27 40 | syl3anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( TopOpen ‘ 𝐺 ) ) ↔ ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) ) |
| 42 | 37 41 | mpbid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) |
| 43 | 1 22 | resstopn | ⊢ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) = ( TopOpen ‘ 𝐻 ) |
| 44 | 43 12 | istgp | ⊢ ( 𝐻 ∈ TopGrp ↔ ( 𝐻 ∈ Grp ∧ 𝐻 ∈ TopMnd ∧ ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) ) |
| 45 | 3 7 42 44 | syl3anbrc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ TopGrp ) |