This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgtgp.h | |- H = ( G |`s S ) |
|
| Assertion | subgtgp | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> H e. TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgtgp.h | |- H = ( G |`s S ) |
|
| 2 | 1 | subggrp | |- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
| 3 | 2 | adantl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> H e. Grp ) |
| 4 | tgptmd | |- ( G e. TopGrp -> G e. TopMnd ) |
|
| 5 | subgsubm | |- ( S e. ( SubGrp ` G ) -> S e. ( SubMnd ` G ) ) |
|
| 6 | 1 | submtmd | |- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> H e. TopMnd ) |
| 7 | 4 5 6 | syl2an | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> H e. TopMnd ) |
| 8 | 1 | subgbas | |- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
| 9 | 8 | adantl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> S = ( Base ` H ) ) |
| 10 | 9 | mpteq1d | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( x e. S |-> ( ( invg ` H ) ` x ) ) = ( x e. ( Base ` H ) |-> ( ( invg ` H ) ` x ) ) ) |
| 11 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 12 | eqid | |- ( invg ` H ) = ( invg ` H ) |
|
| 13 | 1 11 12 | subginv | |- ( ( S e. ( SubGrp ` G ) /\ x e. S ) -> ( ( invg ` G ) ` x ) = ( ( invg ` H ) ` x ) ) |
| 14 | 13 | adantll | |- ( ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) /\ x e. S ) -> ( ( invg ` G ) ` x ) = ( ( invg ` H ) ` x ) ) |
| 15 | 14 | mpteq2dva | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( x e. S |-> ( ( invg ` G ) ` x ) ) = ( x e. S |-> ( ( invg ` H ) ` x ) ) ) |
| 16 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 17 | 16 12 | grpinvf | |- ( H e. Grp -> ( invg ` H ) : ( Base ` H ) --> ( Base ` H ) ) |
| 18 | 3 17 | syl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) : ( Base ` H ) --> ( Base ` H ) ) |
| 19 | 18 | feqmptd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) = ( x e. ( Base ` H ) |-> ( ( invg ` H ) ` x ) ) ) |
| 20 | 10 15 19 | 3eqtr4rd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) = ( x e. S |-> ( ( invg ` G ) ` x ) ) ) |
| 21 | eqid | |- ( ( TopOpen ` G ) |`t S ) = ( ( TopOpen ` G ) |`t S ) |
|
| 22 | eqid | |- ( TopOpen ` G ) = ( TopOpen ` G ) |
|
| 23 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 24 | 22 23 | tgptopon | |- ( G e. TopGrp -> ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) ) |
| 25 | 24 | adantr | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) ) |
| 26 | 23 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 27 | 26 | adantl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> S C_ ( Base ` G ) ) |
| 28 | tgpgrp | |- ( G e. TopGrp -> G e. Grp ) |
|
| 29 | 28 | adantr | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> G e. Grp ) |
| 30 | 23 11 | grpinvf | |- ( G e. Grp -> ( invg ` G ) : ( Base ` G ) --> ( Base ` G ) ) |
| 31 | 29 30 | syl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` G ) : ( Base ` G ) --> ( Base ` G ) ) |
| 32 | 31 | feqmptd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` G ) = ( x e. ( Base ` G ) |-> ( ( invg ` G ) ` x ) ) ) |
| 33 | 22 11 | tgpinv | |- ( G e. TopGrp -> ( invg ` G ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
| 34 | 33 | adantr | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` G ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
| 35 | 32 34 | eqeltrrd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( x e. ( Base ` G ) |-> ( ( invg ` G ) ` x ) ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
| 36 | 21 25 27 35 | cnmpt1res | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( x e. S |-> ( ( invg ` G ) ` x ) ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( TopOpen ` G ) ) ) |
| 37 | 20 36 | eqeltrd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( TopOpen ` G ) ) ) |
| 38 | 18 | frnd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ran ( invg ` H ) C_ ( Base ` H ) ) |
| 39 | 38 9 | sseqtrrd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ran ( invg ` H ) C_ S ) |
| 40 | cnrest2 | |- ( ( ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) /\ ran ( invg ` H ) C_ S /\ S C_ ( Base ` G ) ) -> ( ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( TopOpen ` G ) ) <-> ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( ( TopOpen ` G ) |`t S ) ) ) ) |
|
| 41 | 25 39 27 40 | syl3anc | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( TopOpen ` G ) ) <-> ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( ( TopOpen ` G ) |`t S ) ) ) ) |
| 42 | 37 41 | mpbid | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( ( TopOpen ` G ) |`t S ) ) ) |
| 43 | 1 22 | resstopn | |- ( ( TopOpen ` G ) |`t S ) = ( TopOpen ` H ) |
| 44 | 43 12 | istgp | |- ( H e. TopGrp <-> ( H e. Grp /\ H e. TopMnd /\ ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( ( TopOpen ` G ) |`t S ) ) ) ) |
| 45 | 3 7 42 44 | syl3anbrc | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> H e. TopGrp ) |