This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgmulgcl.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| subgmulg.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | ||
| subgmulg.t | ⊢ ∙ = ( .g ‘ 𝐻 ) | ||
| Assertion | subgmulg | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) = ( 𝑁 ∙ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgmulgcl.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 2 | subgmulg.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 3 | subgmulg.t | ⊢ ∙ = ( .g ‘ 𝐻 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 5 | 2 4 | subg0 | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 7 | 6 | ifeq1d | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) ) = if ( 𝑁 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) ) ) |
| 8 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 9 | 2 8 | ressplusg | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 11 | 10 | seqeq2d | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ ¬ 𝑁 = 0 ) → seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ) |
| 13 | 12 | fveq1d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ ¬ 𝑁 = 0 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 14 | 13 | ifeq1d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ ¬ 𝑁 = 0 ) → if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) = if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) ) |
| 15 | simp2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → 𝑁 ∈ ℤ ) | |
| 16 | 15 | zred | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → 𝑁 ∈ ℝ ) |
| 17 | 0re | ⊢ 0 ∈ ℝ | |
| 18 | axlttri | ⊢ ( ( 𝑁 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑁 < 0 ↔ ¬ ( 𝑁 = 0 ∨ 0 < 𝑁 ) ) ) | |
| 19 | 16 17 18 | sylancl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 < 0 ↔ ¬ ( 𝑁 = 0 ∨ 0 < 𝑁 ) ) ) |
| 20 | ioran | ⊢ ( ¬ ( 𝑁 = 0 ∨ 0 < 𝑁 ) ↔ ( ¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁 ) ) | |
| 21 | 19 20 | bitrdi | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 < 0 ↔ ( ¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁 ) ) ) |
| 22 | 21 | biimpar | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ ( ¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁 ) ) → 𝑁 < 0 ) |
| 23 | simpl1 | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 < 0 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 24 | 15 | adantr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 < 0 ) → 𝑁 ∈ ℤ ) |
| 25 | 24 | znegcld | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 < 0 ) → - 𝑁 ∈ ℤ ) |
| 26 | 16 | lt0neg1d | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 < 0 ↔ 0 < - 𝑁 ) ) |
| 27 | 26 | biimpa | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 < 0 ) → 0 < - 𝑁 ) |
| 28 | elnnz | ⊢ ( - 𝑁 ∈ ℕ ↔ ( - 𝑁 ∈ ℤ ∧ 0 < - 𝑁 ) ) | |
| 29 | 25 27 28 | sylanbrc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 < 0 ) → - 𝑁 ∈ ℕ ) |
| 30 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 31 | 30 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 33 | simp3 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) | |
| 34 | 32 33 | sseldd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 < 0 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 36 | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) | |
| 37 | 30 8 1 36 | mulgnn | ⊢ ( ( - 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( - 𝑁 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) |
| 38 | 29 35 37 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 < 0 ) → ( - 𝑁 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) |
| 39 | 33 | adantr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 < 0 ) → 𝑋 ∈ 𝑆 ) |
| 40 | 1 | subgmulgcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ - 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → ( - 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 41 | 23 25 39 40 | syl3anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 < 0 ) → ( - 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 42 | 38 41 | eqeltrrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 < 0 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ∈ 𝑆 ) |
| 43 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 44 | eqid | ⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) | |
| 45 | 2 43 44 | subginv | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) |
| 46 | 23 42 45 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 < 0 ) → ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) |
| 47 | 22 46 | syldan | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ ( ¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) |
| 48 | 11 | adantr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ ( ¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁 ) ) → seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ) |
| 49 | 48 | fveq1d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ ( ¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁 ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) |
| 50 | 49 | fveq2d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ ( ¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁 ) ) → ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) |
| 51 | 47 50 | eqtrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ ( ¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) |
| 52 | 51 | anassrs | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ ¬ 𝑁 = 0 ) ∧ ¬ 0 < 𝑁 ) → ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) |
| 53 | 52 | ifeq2da | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ ¬ 𝑁 = 0 ) → if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) = if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) ) |
| 54 | 14 53 | eqtrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ ¬ 𝑁 = 0 ) → if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) = if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) ) |
| 55 | 54 | ifeq2da | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → if ( 𝑁 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) ) = if ( 𝑁 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) ) ) |
| 56 | 7 55 | eqtrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) ) = if ( 𝑁 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) ) ) |
| 57 | 30 8 4 43 1 36 | mulgval | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑁 · 𝑋 ) = if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) ) ) |
| 58 | 15 34 57 | syl2anc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) = if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) ) ) |
| 59 | 2 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 60 | 59 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 61 | 33 60 | eleqtrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
| 62 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 63 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 64 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 65 | eqid | ⊢ seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) | |
| 66 | 62 63 64 44 3 65 | mulgval | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑋 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑁 ∙ 𝑋 ) = if ( 𝑁 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) ) ) |
| 67 | 15 61 66 | syl2anc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 ∙ 𝑋 ) = if ( 𝑁 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑁 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) ) ) ) ) |
| 68 | 56 58 67 | 3eqtr4d | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) = ( 𝑁 ∙ 𝑋 ) ) |