This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgmulgcl.t | |- .x. = ( .g ` G ) |
|
| subgmulg.h | |- H = ( G |`s S ) |
||
| subgmulg.t | |- .xb = ( .g ` H ) |
||
| Assertion | subgmulg | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> ( N .x. X ) = ( N .xb X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgmulgcl.t | |- .x. = ( .g ` G ) |
|
| 2 | subgmulg.h | |- H = ( G |`s S ) |
|
| 3 | subgmulg.t | |- .xb = ( .g ` H ) |
|
| 4 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 5 | 2 4 | subg0 | |- ( S e. ( SubGrp ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 7 | 6 | ifeq1d | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) ) ) = if ( N = 0 , ( 0g ` H ) , if ( 0 < N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) ) ) ) |
| 8 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 9 | 2 8 | ressplusg | |- ( S e. ( SubGrp ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
| 10 | 9 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> ( +g ` G ) = ( +g ` H ) ) |
| 11 | 10 | seqeq2d | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ) |
| 12 | 11 | adantr | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ -. N = 0 ) -> seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ) |
| 13 | 12 | fveq1d | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ -. N = 0 ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) |
| 14 | 13 | ifeq1d | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ -. N = 0 ) -> if ( 0 < N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) ) = if ( 0 < N , ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) ) ) |
| 15 | simp2 | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> N e. ZZ ) |
|
| 16 | 15 | zred | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> N e. RR ) |
| 17 | 0re | |- 0 e. RR |
|
| 18 | axlttri | |- ( ( N e. RR /\ 0 e. RR ) -> ( N < 0 <-> -. ( N = 0 \/ 0 < N ) ) ) |
|
| 19 | 16 17 18 | sylancl | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> ( N < 0 <-> -. ( N = 0 \/ 0 < N ) ) ) |
| 20 | ioran | |- ( -. ( N = 0 \/ 0 < N ) <-> ( -. N = 0 /\ -. 0 < N ) ) |
|
| 21 | 19 20 | bitrdi | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> ( N < 0 <-> ( -. N = 0 /\ -. 0 < N ) ) ) |
| 22 | 21 | biimpar | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ ( -. N = 0 /\ -. 0 < N ) ) -> N < 0 ) |
| 23 | simpl1 | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ N < 0 ) -> S e. ( SubGrp ` G ) ) |
|
| 24 | 15 | adantr | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ N < 0 ) -> N e. ZZ ) |
| 25 | 24 | znegcld | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ N < 0 ) -> -u N e. ZZ ) |
| 26 | 16 | lt0neg1d | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> ( N < 0 <-> 0 < -u N ) ) |
| 27 | 26 | biimpa | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ N < 0 ) -> 0 < -u N ) |
| 28 | elnnz | |- ( -u N e. NN <-> ( -u N e. ZZ /\ 0 < -u N ) ) |
|
| 29 | 25 27 28 | sylanbrc | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ N < 0 ) -> -u N e. NN ) |
| 30 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 31 | 30 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 32 | 31 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> S C_ ( Base ` G ) ) |
| 33 | simp3 | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> X e. S ) |
|
| 34 | 32 33 | sseldd | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> X e. ( Base ` G ) ) |
| 35 | 34 | adantr | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ N < 0 ) -> X e. ( Base ` G ) ) |
| 36 | eqid | |- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
|
| 37 | 30 8 1 36 | mulgnn | |- ( ( -u N e. NN /\ X e. ( Base ` G ) ) -> ( -u N .x. X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) |
| 38 | 29 35 37 | syl2anc | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ N < 0 ) -> ( -u N .x. X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) |
| 39 | 33 | adantr | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ N < 0 ) -> X e. S ) |
| 40 | 1 | subgmulgcl | |- ( ( S e. ( SubGrp ` G ) /\ -u N e. ZZ /\ X e. S ) -> ( -u N .x. X ) e. S ) |
| 41 | 23 25 39 40 | syl3anc | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ N < 0 ) -> ( -u N .x. X ) e. S ) |
| 42 | 38 41 | eqeltrrd | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ N < 0 ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) e. S ) |
| 43 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 44 | eqid | |- ( invg ` H ) = ( invg ` H ) |
|
| 45 | 2 43 44 | subginv | |- ( ( S e. ( SubGrp ` G ) /\ ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) e. S ) -> ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) = ( ( invg ` H ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) ) |
| 46 | 23 42 45 | syl2anc | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ N < 0 ) -> ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) = ( ( invg ` H ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) ) |
| 47 | 22 46 | syldan | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ ( -. N = 0 /\ -. 0 < N ) ) -> ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) = ( ( invg ` H ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) ) |
| 48 | 11 | adantr | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ ( -. N = 0 /\ -. 0 < N ) ) -> seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ) |
| 49 | 48 | fveq1d | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ ( -. N = 0 /\ -. 0 < N ) ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` -u N ) ) |
| 50 | 49 | fveq2d | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ ( -. N = 0 /\ -. 0 < N ) ) -> ( ( invg ` H ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) = ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` -u N ) ) ) |
| 51 | 47 50 | eqtrd | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ ( -. N = 0 /\ -. 0 < N ) ) -> ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) = ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` -u N ) ) ) |
| 52 | 51 | anassrs | |- ( ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ -. N = 0 ) /\ -. 0 < N ) -> ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) = ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` -u N ) ) ) |
| 53 | 52 | ifeq2da | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ -. N = 0 ) -> if ( 0 < N , ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) ) = if ( 0 < N , ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` -u N ) ) ) ) |
| 54 | 14 53 | eqtrd | |- ( ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) /\ -. N = 0 ) -> if ( 0 < N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) ) = if ( 0 < N , ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` -u N ) ) ) ) |
| 55 | 54 | ifeq2da | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> if ( N = 0 , ( 0g ` H ) , if ( 0 < N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) ) ) = if ( N = 0 , ( 0g ` H ) , if ( 0 < N , ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` -u N ) ) ) ) ) |
| 56 | 7 55 | eqtrd | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) ) ) = if ( N = 0 , ( 0g ` H ) , if ( 0 < N , ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` -u N ) ) ) ) ) |
| 57 | 30 8 4 43 1 36 | mulgval | |- ( ( N e. ZZ /\ X e. ( Base ` G ) ) -> ( N .x. X ) = if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) ) ) ) |
| 58 | 15 34 57 | syl2anc | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> ( N .x. X ) = if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) ) ) ) ) |
| 59 | 2 | subgbas | |- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
| 60 | 59 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> S = ( Base ` H ) ) |
| 61 | 33 60 | eleqtrd | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> X e. ( Base ` H ) ) |
| 62 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 63 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 64 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 65 | eqid | |- seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) |
|
| 66 | 62 63 64 44 3 65 | mulgval | |- ( ( N e. ZZ /\ X e. ( Base ` H ) ) -> ( N .xb X ) = if ( N = 0 , ( 0g ` H ) , if ( 0 < N , ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` -u N ) ) ) ) ) |
| 67 | 15 61 66 | syl2anc | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> ( N .xb X ) = if ( N = 0 , ( 0g ` H ) , if ( 0 < N , ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` -u N ) ) ) ) ) |
| 68 | 56 58 67 | 3eqtr4d | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> ( N .x. X ) = ( N .xb X ) ) |