This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgval.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| mulgval.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| mulgval.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| mulgval.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgval.s | ⊢ 𝑆 = seq 1 ( + , ( ℕ × { 𝑋 } ) ) | ||
| Assertion | mulgval | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = if ( 𝑁 = 0 , 0 , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgval.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | mulgval.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | mulgval.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 5 | mulgval.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 6 | mulgval.s | ⊢ 𝑆 = seq 1 ( + , ( ℕ × { 𝑋 } ) ) | |
| 7 | simpl | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → 𝑛 = 𝑁 ) | |
| 8 | 7 | eqeq1d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( 𝑛 = 0 ↔ 𝑁 = 0 ) ) |
| 9 | 7 | breq2d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( 0 < 𝑛 ↔ 0 < 𝑁 ) ) |
| 10 | simpr | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) | |
| 11 | 10 | sneqd | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → { 𝑥 } = { 𝑋 } ) |
| 12 | 11 | xpeq2d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( ℕ × { 𝑥 } ) = ( ℕ × { 𝑋 } ) ) |
| 13 | 12 | seqeq3d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → seq 1 ( + , ( ℕ × { 𝑥 } ) ) = seq 1 ( + , ( ℕ × { 𝑋 } ) ) ) |
| 14 | 13 6 | eqtr4di | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → seq 1 ( + , ( ℕ × { 𝑥 } ) ) = 𝑆 ) |
| 15 | 14 7 | fveq12d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ( 𝑆 ‘ 𝑁 ) ) |
| 16 | 7 | negeqd | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → - 𝑛 = - 𝑁 ) |
| 17 | 14 16 | fveq12d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) = ( 𝑆 ‘ - 𝑁 ) ) |
| 18 | 17 | fveq2d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) = ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ) |
| 19 | 9 15 18 | ifbieq12d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) = if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) |
| 20 | 8 19 | ifbieq2d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) = if ( 𝑁 = 0 , 0 , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) ) |
| 21 | 1 2 3 4 5 | mulgfval | ⊢ · = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |
| 22 | 3 | fvexi | ⊢ 0 ∈ V |
| 23 | fvex | ⊢ ( 𝑆 ‘ 𝑁 ) ∈ V | |
| 24 | fvex | ⊢ ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ∈ V | |
| 25 | 23 24 | ifex | ⊢ if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ∈ V |
| 26 | 22 25 | ifex | ⊢ if ( 𝑁 = 0 , 0 , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) ∈ V |
| 27 | 20 21 26 | ovmpoa | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = if ( 𝑁 = 0 , 0 , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) ) |