This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnn.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| mulgnn.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnn.s | ⊢ 𝑆 = seq 1 ( + , ( ℕ × { 𝑋 } ) ) | ||
| Assertion | mulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝑆 ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnn.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | mulgnn.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | mulgnn.s | ⊢ 𝑆 = seq 1 ( + , ( ℕ × { 𝑋 } ) ) | |
| 5 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 8 | 1 2 6 7 3 4 | mulgval | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) ) |
| 9 | 5 8 | sylan | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) ) |
| 10 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 11 | 10 | neneqd | ⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 ) |
| 12 | 11 | iffalsed | ⊢ ( 𝑁 ∈ ℕ → if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) = if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) |
| 13 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 14 | 13 | iftrued | ⊢ ( 𝑁 ∈ ℕ → if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) = ( 𝑆 ‘ 𝑁 ) ) |
| 15 | 12 14 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) = ( 𝑆 ‘ 𝑁 ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → if ( 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( ( invg ‘ 𝐺 ) ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) = ( 𝑆 ‘ 𝑁 ) ) |
| 17 | 9 16 | eqtrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝑆 ‘ 𝑁 ) ) |