This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grppropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| grppropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| grppropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | grppropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Grp ↔ 𝐿 ∈ Grp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grppropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | grppropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | grppropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | 1 2 3 | mndpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd ) ) |
| 5 | 1 2 3 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 7 | 3 6 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 8 | 7 | anass1rs | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 9 | 8 | rexbidva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 10 | 9 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 11 | 1 | rexeqdv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) |
| 12 | 1 11 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) |
| 13 | 2 | rexeqdv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 14 | 2 13 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 15 | 10 12 14 | 3bitr3d | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 16 | 4 15 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐾 ∈ Mnd ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ↔ ( 𝐿 ∈ Mnd ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) ) |
| 17 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 18 | eqid | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) | |
| 19 | eqid | ⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) | |
| 20 | 17 18 19 | isgrp | ⊢ ( 𝐾 ∈ Grp ↔ ( 𝐾 ∈ Mnd ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) |
| 21 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 22 | eqid | ⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) | |
| 23 | eqid | ⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) | |
| 24 | 21 22 23 | isgrp | ⊢ ( 𝐿 ∈ Grp ↔ ( 𝐿 ∈ Mnd ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 25 | 16 20 24 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐾 ∈ Grp ↔ 𝐿 ∈ Grp ) ) |