This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtneglem | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | resqrtcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) | |
| 3 | recn | ⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ → ( √ ‘ 𝐴 ) ∈ ℂ ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℂ ) |
| 5 | sqmul | ⊢ ( ( i ∈ ℂ ∧ ( √ ‘ 𝐴 ) ∈ ℂ ) → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = ( ( i ↑ 2 ) · ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) | |
| 6 | 1 4 5 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = ( ( i ↑ 2 ) · ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 7 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 8 | 7 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( i ↑ 2 ) = - 1 ) |
| 9 | resqrtth | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) | |
| 10 | 8 9 | oveq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( i ↑ 2 ) · ( ( √ ‘ 𝐴 ) ↑ 2 ) ) = ( - 1 · 𝐴 ) ) |
| 11 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 13 | 12 | mulm1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 14 | 6 10 13 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ) |
| 15 | renegcl | ⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ → - ( √ ‘ 𝐴 ) ∈ ℝ ) | |
| 16 | 0re | ⊢ 0 ∈ ℝ | |
| 17 | reim0 | ⊢ ( - ( √ ‘ 𝐴 ) ∈ ℝ → ( ℑ ‘ - ( √ ‘ 𝐴 ) ) = 0 ) | |
| 18 | recn | ⊢ ( - ( √ ‘ 𝐴 ) ∈ ℝ → - ( √ ‘ 𝐴 ) ∈ ℂ ) | |
| 19 | imre | ⊢ ( - ( √ ‘ 𝐴 ) ∈ ℂ → ( ℑ ‘ - ( √ ‘ 𝐴 ) ) = ( ℜ ‘ ( - i · - ( √ ‘ 𝐴 ) ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( - ( √ ‘ 𝐴 ) ∈ ℝ → ( ℑ ‘ - ( √ ‘ 𝐴 ) ) = ( ℜ ‘ ( - i · - ( √ ‘ 𝐴 ) ) ) ) |
| 21 | 17 20 | eqtr3d | ⊢ ( - ( √ ‘ 𝐴 ) ∈ ℝ → 0 = ( ℜ ‘ ( - i · - ( √ ‘ 𝐴 ) ) ) ) |
| 22 | eqle | ⊢ ( ( 0 ∈ ℝ ∧ 0 = ( ℜ ‘ ( - i · - ( √ ‘ 𝐴 ) ) ) ) → 0 ≤ ( ℜ ‘ ( - i · - ( √ ‘ 𝐴 ) ) ) ) | |
| 23 | 16 21 22 | sylancr | ⊢ ( - ( √ ‘ 𝐴 ) ∈ ℝ → 0 ≤ ( ℜ ‘ ( - i · - ( √ ‘ 𝐴 ) ) ) ) |
| 24 | 2 15 23 | 3syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( ℜ ‘ ( - i · - ( √ ‘ 𝐴 ) ) ) ) |
| 25 | mul2neg | ⊢ ( ( i ∈ ℂ ∧ ( √ ‘ 𝐴 ) ∈ ℂ ) → ( - i · - ( √ ‘ 𝐴 ) ) = ( i · ( √ ‘ 𝐴 ) ) ) | |
| 26 | 1 4 25 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( - i · - ( √ ‘ 𝐴 ) ) = ( i · ( √ ‘ 𝐴 ) ) ) |
| 27 | 26 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ℜ ‘ ( - i · - ( √ ‘ 𝐴 ) ) ) = ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ) |
| 28 | 24 27 | breqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ) |
| 29 | ixi | ⊢ ( i · i ) = - 1 | |
| 30 | 29 | oveq1i | ⊢ ( ( i · i ) · ( √ ‘ 𝐴 ) ) = ( - 1 · ( √ ‘ 𝐴 ) ) |
| 31 | mulass | ⊢ ( ( i ∈ ℂ ∧ i ∈ ℂ ∧ ( √ ‘ 𝐴 ) ∈ ℂ ) → ( ( i · i ) · ( √ ‘ 𝐴 ) ) = ( i · ( i · ( √ ‘ 𝐴 ) ) ) ) | |
| 32 | 1 1 31 | mp3an12 | ⊢ ( ( √ ‘ 𝐴 ) ∈ ℂ → ( ( i · i ) · ( √ ‘ 𝐴 ) ) = ( i · ( i · ( √ ‘ 𝐴 ) ) ) ) |
| 33 | mulm1 | ⊢ ( ( √ ‘ 𝐴 ) ∈ ℂ → ( - 1 · ( √ ‘ 𝐴 ) ) = - ( √ ‘ 𝐴 ) ) | |
| 34 | 30 32 33 | 3eqtr3a | ⊢ ( ( √ ‘ 𝐴 ) ∈ ℂ → ( i · ( i · ( √ ‘ 𝐴 ) ) ) = - ( √ ‘ 𝐴 ) ) |
| 35 | 4 34 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( i · ( i · ( √ ‘ 𝐴 ) ) ) = - ( √ ‘ 𝐴 ) ) |
| 36 | sqrtge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) ) | |
| 37 | le0neg2 | ⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ → ( 0 ≤ ( √ ‘ 𝐴 ) ↔ - ( √ ‘ 𝐴 ) ≤ 0 ) ) | |
| 38 | lenlt | ⊢ ( ( - ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( - ( √ ‘ 𝐴 ) ≤ 0 ↔ ¬ 0 < - ( √ ‘ 𝐴 ) ) ) | |
| 39 | 15 16 38 | sylancl | ⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ → ( - ( √ ‘ 𝐴 ) ≤ 0 ↔ ¬ 0 < - ( √ ‘ 𝐴 ) ) ) |
| 40 | 37 39 | bitrd | ⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ → ( 0 ≤ ( √ ‘ 𝐴 ) ↔ ¬ 0 < - ( √ ‘ 𝐴 ) ) ) |
| 41 | 2 40 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 0 ≤ ( √ ‘ 𝐴 ) ↔ ¬ 0 < - ( √ ‘ 𝐴 ) ) ) |
| 42 | 36 41 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ¬ 0 < - ( √ ‘ 𝐴 ) ) |
| 43 | elrp | ⊢ ( - ( √ ‘ 𝐴 ) ∈ ℝ+ ↔ ( - ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 < - ( √ ‘ 𝐴 ) ) ) | |
| 44 | 2 15 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → - ( √ ‘ 𝐴 ) ∈ ℝ ) |
| 45 | 44 | biantrurd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 0 < - ( √ ‘ 𝐴 ) ↔ ( - ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 < - ( √ ‘ 𝐴 ) ) ) ) |
| 46 | 43 45 | bitr4id | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( - ( √ ‘ 𝐴 ) ∈ ℝ+ ↔ 0 < - ( √ ‘ 𝐴 ) ) ) |
| 47 | 42 46 | mtbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ¬ - ( √ ‘ 𝐴 ) ∈ ℝ+ ) |
| 48 | 35 47 | eqneltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ¬ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
| 49 | df-nel | ⊢ ( ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ↔ ¬ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∈ ℝ+ ) | |
| 50 | 48 49 | sylibr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) |
| 51 | 14 28 50 | 3jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ) |