This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 1 is an identity element for multiplication. (Contributed by NM, 2-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1idsr | ⊢ ( 𝐴 ∈ R → ( 𝐴 ·R 1R ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
| 2 | oveq1 | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R 1R ) = ( 𝐴 ·R 1R ) ) | |
| 3 | id | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → ( ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R 1R ) = [ 〈 𝑥 , 𝑦 〉 ] ~R ↔ ( 𝐴 ·R 1R ) = 𝐴 ) ) |
| 5 | df-1r | ⊢ 1R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R | |
| 6 | 5 | oveq2i | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R 1R ) = ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) |
| 7 | 1pr | ⊢ 1P ∈ P | |
| 8 | addclpr | ⊢ ( ( 1P ∈ P ∧ 1P ∈ P ) → ( 1P +P 1P ) ∈ P ) | |
| 9 | 7 7 8 | mp2an | ⊢ ( 1P +P 1P ) ∈ P |
| 10 | mulsrpr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( ( 1P +P 1P ) ∈ P ∧ 1P ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) 〉 ] ~R ) | |
| 11 | 9 7 10 | mpanr12 | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) 〉 ] ~R ) |
| 12 | distrpr | ⊢ ( 𝑥 ·P ( 1P +P 1P ) ) = ( ( 𝑥 ·P 1P ) +P ( 𝑥 ·P 1P ) ) | |
| 13 | 1idpr | ⊢ ( 𝑥 ∈ P → ( 𝑥 ·P 1P ) = 𝑥 ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑥 ∈ P → ( ( 𝑥 ·P 1P ) +P ( 𝑥 ·P 1P ) ) = ( 𝑥 +P ( 𝑥 ·P 1P ) ) ) |
| 15 | 12 14 | eqtr2id | ⊢ ( 𝑥 ∈ P → ( 𝑥 +P ( 𝑥 ·P 1P ) ) = ( 𝑥 ·P ( 1P +P 1P ) ) ) |
| 16 | distrpr | ⊢ ( 𝑦 ·P ( 1P +P 1P ) ) = ( ( 𝑦 ·P 1P ) +P ( 𝑦 ·P 1P ) ) | |
| 17 | 1idpr | ⊢ ( 𝑦 ∈ P → ( 𝑦 ·P 1P ) = 𝑦 ) | |
| 18 | 17 | oveq1d | ⊢ ( 𝑦 ∈ P → ( ( 𝑦 ·P 1P ) +P ( 𝑦 ·P 1P ) ) = ( 𝑦 +P ( 𝑦 ·P 1P ) ) ) |
| 19 | 16 18 | eqtrid | ⊢ ( 𝑦 ∈ P → ( 𝑦 ·P ( 1P +P 1P ) ) = ( 𝑦 +P ( 𝑦 ·P 1P ) ) ) |
| 20 | 15 19 | oveqan12d | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑥 +P ( 𝑥 ·P 1P ) ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) = ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 +P ( 𝑦 ·P 1P ) ) ) ) |
| 21 | addasspr | ⊢ ( ( 𝑥 +P ( 𝑥 ·P 1P ) ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) = ( 𝑥 +P ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ) | |
| 22 | ovex | ⊢ ( 𝑥 ·P ( 1P +P 1P ) ) ∈ V | |
| 23 | vex | ⊢ 𝑦 ∈ V | |
| 24 | ovex | ⊢ ( 𝑦 ·P 1P ) ∈ V | |
| 25 | addcompr | ⊢ ( 𝑧 +P 𝑤 ) = ( 𝑤 +P 𝑧 ) | |
| 26 | addasspr | ⊢ ( ( 𝑧 +P 𝑤 ) +P 𝑣 ) = ( 𝑧 +P ( 𝑤 +P 𝑣 ) ) | |
| 27 | 22 23 24 25 26 | caov12 | ⊢ ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 +P ( 𝑦 ·P 1P ) ) ) = ( 𝑦 +P ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ) |
| 28 | 20 21 27 | 3eqtr3g | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑥 +P ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ) = ( 𝑦 +P ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ) ) |
| 29 | mulclpr | ⊢ ( ( 𝑥 ∈ P ∧ ( 1P +P 1P ) ∈ P ) → ( 𝑥 ·P ( 1P +P 1P ) ) ∈ P ) | |
| 30 | 9 29 | mpan2 | ⊢ ( 𝑥 ∈ P → ( 𝑥 ·P ( 1P +P 1P ) ) ∈ P ) |
| 31 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ 1P ∈ P ) → ( 𝑦 ·P 1P ) ∈ P ) | |
| 32 | 7 31 | mpan2 | ⊢ ( 𝑦 ∈ P → ( 𝑦 ·P 1P ) ∈ P ) |
| 33 | addclpr | ⊢ ( ( ( 𝑥 ·P ( 1P +P 1P ) ) ∈ P ∧ ( 𝑦 ·P 1P ) ∈ P ) → ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ∈ P ) | |
| 34 | 30 32 33 | syl2an | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ∈ P ) |
| 35 | mulclpr | ⊢ ( ( 𝑥 ∈ P ∧ 1P ∈ P ) → ( 𝑥 ·P 1P ) ∈ P ) | |
| 36 | 7 35 | mpan2 | ⊢ ( 𝑥 ∈ P → ( 𝑥 ·P 1P ) ∈ P ) |
| 37 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ ( 1P +P 1P ) ∈ P ) → ( 𝑦 ·P ( 1P +P 1P ) ) ∈ P ) | |
| 38 | 9 37 | mpan2 | ⊢ ( 𝑦 ∈ P → ( 𝑦 ·P ( 1P +P 1P ) ) ∈ P ) |
| 39 | addclpr | ⊢ ( ( ( 𝑥 ·P 1P ) ∈ P ∧ ( 𝑦 ·P ( 1P +P 1P ) ) ∈ P ) → ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ∈ P ) | |
| 40 | 36 38 39 | syl2an | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ∈ P ) |
| 41 | 34 40 | anim12i | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ) → ( ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ∈ P ∧ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ∈ P ) ) |
| 42 | enreceq | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ∈ P ∧ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R = [ 〈 ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) 〉 ] ~R ↔ ( 𝑥 +P ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ) = ( 𝑦 +P ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ) ) ) | |
| 43 | 41 42 | syldan | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R = [ 〈 ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) 〉 ] ~R ↔ ( 𝑥 +P ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ) = ( 𝑦 +P ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ) ) ) |
| 44 | 43 | anidms | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R = [ 〈 ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) 〉 ] ~R ↔ ( 𝑥 +P ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ) = ( 𝑦 +P ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ) ) ) |
| 45 | 28 44 | mpbird | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → [ 〈 𝑥 , 𝑦 〉 ] ~R = [ 〈 ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) 〉 ] ~R ) |
| 46 | 11 45 | eqtr4d | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) = [ 〈 𝑥 , 𝑦 〉 ] ~R ) |
| 47 | 6 46 | eqtrid | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R 1R ) = [ 〈 𝑥 , 𝑦 〉 ] ~R ) |
| 48 | 1 4 47 | ecoptocl | ⊢ ( 𝐴 ∈ R → ( 𝐴 ·R 1R ) = 𝐴 ) |