This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 15-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recexsr | ⊢ ( ( 𝐴 ∈ R ∧ 𝐴 ≠ 0R ) → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqgt0sr | ⊢ ( ( 𝐴 ∈ R ∧ 𝐴 ≠ 0R ) → 0R <R ( 𝐴 ·R 𝐴 ) ) | |
| 2 | mulclsr | ⊢ ( ( 𝐴 ∈ R ∧ 𝑦 ∈ R ) → ( 𝐴 ·R 𝑦 ) ∈ R ) | |
| 3 | mulasssr | ⊢ ( ( 𝐴 ·R 𝐴 ) ·R 𝑦 ) = ( 𝐴 ·R ( 𝐴 ·R 𝑦 ) ) | |
| 4 | 3 | eqeq1i | ⊢ ( ( ( 𝐴 ·R 𝐴 ) ·R 𝑦 ) = 1R ↔ ( 𝐴 ·R ( 𝐴 ·R 𝑦 ) ) = 1R ) |
| 5 | oveq2 | ⊢ ( 𝑥 = ( 𝐴 ·R 𝑦 ) → ( 𝐴 ·R 𝑥 ) = ( 𝐴 ·R ( 𝐴 ·R 𝑦 ) ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑥 = ( 𝐴 ·R 𝑦 ) → ( ( 𝐴 ·R 𝑥 ) = 1R ↔ ( 𝐴 ·R ( 𝐴 ·R 𝑦 ) ) = 1R ) ) |
| 7 | 6 | rspcev | ⊢ ( ( ( 𝐴 ·R 𝑦 ) ∈ R ∧ ( 𝐴 ·R ( 𝐴 ·R 𝑦 ) ) = 1R ) → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |
| 8 | 4 7 | sylan2b | ⊢ ( ( ( 𝐴 ·R 𝑦 ) ∈ R ∧ ( ( 𝐴 ·R 𝐴 ) ·R 𝑦 ) = 1R ) → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |
| 9 | 2 8 | sylan | ⊢ ( ( ( 𝐴 ∈ R ∧ 𝑦 ∈ R ) ∧ ( ( 𝐴 ·R 𝐴 ) ·R 𝑦 ) = 1R ) → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |
| 10 | 9 | rexlimdva2 | ⊢ ( 𝐴 ∈ R → ( ∃ 𝑦 ∈ R ( ( 𝐴 ·R 𝐴 ) ·R 𝑦 ) = 1R → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) ) |
| 11 | recexsrlem | ⊢ ( 0R <R ( 𝐴 ·R 𝐴 ) → ∃ 𝑦 ∈ R ( ( 𝐴 ·R 𝐴 ) ·R 𝑦 ) = 1R ) | |
| 12 | 10 11 | impel | ⊢ ( ( 𝐴 ∈ R ∧ 0R <R ( 𝐴 ·R 𝐴 ) ) → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |
| 13 | 1 12 | syldan | ⊢ ( ( 𝐴 ∈ R ∧ 𝐴 ≠ 0R ) → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |