This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of signed reals is associative. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulasssr | ⊢ ( ( 𝐴 ·R 𝐵 ) ·R 𝐶 ) = ( 𝐴 ·R ( 𝐵 ·R 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
| 2 | mulsrpr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ) | |
| 3 | mulsrpr | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ~R ·R [ 〈 𝑣 , 𝑢 〉 ] ~R ) = [ 〈 ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) , ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) 〉 ] ~R ) | |
| 4 | mulsrpr | ⊢ ( ( ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ·R [ 〈 𝑣 , 𝑢 〉 ] ~R ) = [ 〈 ( ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ·P 𝑣 ) +P ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ·P 𝑢 ) ) , ( ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ·P 𝑢 ) +P ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ·P 𝑣 ) ) 〉 ] ~R ) | |
| 5 | mulsrpr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ∈ P ∧ ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) , ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ) +P ( 𝑦 ·P ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ) ) , ( ( 𝑥 ·P ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ) +P ( 𝑦 ·P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ) ) 〉 ] ~R ) | |
| 6 | mulclpr | ⊢ ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 ·P 𝑧 ) ∈ P ) | |
| 7 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑦 ·P 𝑤 ) ∈ P ) | |
| 8 | addclpr | ⊢ ( ( ( 𝑥 ·P 𝑧 ) ∈ P ∧ ( 𝑦 ·P 𝑤 ) ∈ P ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
| 10 | 9 | an4s | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
| 11 | mulclpr | ⊢ ( ( 𝑥 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑥 ·P 𝑤 ) ∈ P ) | |
| 12 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑦 ·P 𝑧 ) ∈ P ) | |
| 13 | addclpr | ⊢ ( ( ( 𝑥 ·P 𝑤 ) ∈ P ∧ ( 𝑦 ·P 𝑧 ) ∈ P ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) |
| 15 | 14 | an42s | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) |
| 16 | 10 15 | jca | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) ) |
| 17 | mulclpr | ⊢ ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑧 ·P 𝑣 ) ∈ P ) | |
| 18 | mulclpr | ⊢ ( ( 𝑤 ∈ P ∧ 𝑢 ∈ P ) → ( 𝑤 ·P 𝑢 ) ∈ P ) | |
| 19 | addclpr | ⊢ ( ( ( 𝑧 ·P 𝑣 ) ∈ P ∧ ( 𝑤 ·P 𝑢 ) ∈ P ) → ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ∈ P ) | |
| 20 | 17 18 19 | syl2an | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) ∧ ( 𝑤 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ∈ P ) |
| 21 | 20 | an4s | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ∈ P ) |
| 22 | mulclpr | ⊢ ( ( 𝑧 ∈ P ∧ 𝑢 ∈ P ) → ( 𝑧 ·P 𝑢 ) ∈ P ) | |
| 23 | mulclpr | ⊢ ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑤 ·P 𝑣 ) ∈ P ) | |
| 24 | addclpr | ⊢ ( ( ( 𝑧 ·P 𝑢 ) ∈ P ∧ ( 𝑤 ·P 𝑣 ) ∈ P ) → ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ∈ P ) | |
| 25 | 22 23 24 | syl2an | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) ) → ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ∈ P ) |
| 26 | 25 | an42s | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ∈ P ) |
| 27 | 21 26 | jca | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ∈ P ∧ ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ∈ P ) ) |
| 28 | vex | ⊢ 𝑥 ∈ V | |
| 29 | vex | ⊢ 𝑦 ∈ V | |
| 30 | vex | ⊢ 𝑧 ∈ V | |
| 31 | mulcompr | ⊢ ( 𝑓 ·P 𝑔 ) = ( 𝑔 ·P 𝑓 ) | |
| 32 | distrpr | ⊢ ( 𝑓 ·P ( 𝑔 +P ℎ ) ) = ( ( 𝑓 ·P 𝑔 ) +P ( 𝑓 ·P ℎ ) ) | |
| 33 | vex | ⊢ 𝑤 ∈ V | |
| 34 | vex | ⊢ 𝑣 ∈ V | |
| 35 | mulasspr | ⊢ ( ( 𝑓 ·P 𝑔 ) ·P ℎ ) = ( 𝑓 ·P ( 𝑔 ·P ℎ ) ) | |
| 36 | vex | ⊢ 𝑢 ∈ V | |
| 37 | addcompr | ⊢ ( 𝑓 +P 𝑔 ) = ( 𝑔 +P 𝑓 ) | |
| 38 | addasspr | ⊢ ( ( 𝑓 +P 𝑔 ) +P ℎ ) = ( 𝑓 +P ( 𝑔 +P ℎ ) ) | |
| 39 | 28 29 30 31 32 33 34 35 36 37 38 | caovlem2 | ⊢ ( ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ·P 𝑣 ) +P ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ·P 𝑢 ) ) = ( ( 𝑥 ·P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ) +P ( 𝑦 ·P ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ) ) |
| 40 | 28 29 30 31 32 33 36 35 34 37 38 | caovlem2 | ⊢ ( ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ·P 𝑢 ) +P ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ·P 𝑣 ) ) = ( ( 𝑥 ·P ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ) +P ( 𝑦 ·P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ) ) |
| 41 | 1 2 3 4 5 16 27 39 40 | ecovass | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R ) → ( ( 𝐴 ·R 𝐵 ) ·R 𝐶 ) = ( 𝐴 ·R ( 𝐵 ·R 𝐶 ) ) ) |
| 42 | dmmulsr | ⊢ dom ·R = ( R × R ) | |
| 43 | 0nsr | ⊢ ¬ ∅ ∈ R | |
| 44 | 42 43 | ndmovass | ⊢ ( ¬ ( 𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R ) → ( ( 𝐴 ·R 𝐵 ) ·R 𝐶 ) = ( 𝐴 ·R ( 𝐵 ·R 𝐶 ) ) ) |
| 45 | 41 44 | pm2.61i | ⊢ ( ( 𝐴 ·R 𝐵 ) ·R 𝐶 ) = ( 𝐴 ·R ( 𝐵 ·R 𝐶 ) ) |