This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of signed reals is commutative. (Contributed by NM, 31-Aug-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcomsr | ⊢ ( 𝐴 ·R 𝐵 ) = ( 𝐵 ·R 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
| 2 | mulsrpr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ) | |
| 3 | mulsrpr | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ~R ·R [ 〈 𝑥 , 𝑦 〉 ] ~R ) = [ 〈 ( ( 𝑧 ·P 𝑥 ) +P ( 𝑤 ·P 𝑦 ) ) , ( ( 𝑧 ·P 𝑦 ) +P ( 𝑤 ·P 𝑥 ) ) 〉 ] ~R ) | |
| 4 | mulcompr | ⊢ ( 𝑥 ·P 𝑧 ) = ( 𝑧 ·P 𝑥 ) | |
| 5 | mulcompr | ⊢ ( 𝑦 ·P 𝑤 ) = ( 𝑤 ·P 𝑦 ) | |
| 6 | 4 5 | oveq12i | ⊢ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) = ( ( 𝑧 ·P 𝑥 ) +P ( 𝑤 ·P 𝑦 ) ) |
| 7 | mulcompr | ⊢ ( 𝑥 ·P 𝑤 ) = ( 𝑤 ·P 𝑥 ) | |
| 8 | mulcompr | ⊢ ( 𝑦 ·P 𝑧 ) = ( 𝑧 ·P 𝑦 ) | |
| 9 | 7 8 | oveq12i | ⊢ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) = ( ( 𝑤 ·P 𝑥 ) +P ( 𝑧 ·P 𝑦 ) ) |
| 10 | addcompr | ⊢ ( ( 𝑤 ·P 𝑥 ) +P ( 𝑧 ·P 𝑦 ) ) = ( ( 𝑧 ·P 𝑦 ) +P ( 𝑤 ·P 𝑥 ) ) | |
| 11 | 9 10 | eqtri | ⊢ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) = ( ( 𝑧 ·P 𝑦 ) +P ( 𝑤 ·P 𝑥 ) ) |
| 12 | 1 2 3 6 11 | ecovcom | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 𝐴 ·R 𝐵 ) = ( 𝐵 ·R 𝐴 ) ) |
| 13 | dmmulsr | ⊢ dom ·R = ( R × R ) | |
| 14 | 13 | ndmovcom | ⊢ ( ¬ ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 𝐴 ·R 𝐵 ) = ( 𝐵 ·R 𝐴 ) ) |
| 15 | 12 14 | pm2.61i | ⊢ ( 𝐴 ·R 𝐵 ) = ( 𝐵 ·R 𝐴 ) |