This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulclsr | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 𝐴 ·R 𝐵 ) ∈ R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
| 2 | oveq1 | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = ( 𝐴 ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ) | |
| 3 | 2 | eleq1d | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → ( ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ∈ ( ( P × P ) / ~R ) ↔ ( 𝐴 ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ∈ ( ( P × P ) / ~R ) ) ) |
| 4 | oveq2 | ⊢ ( [ 〈 𝑧 , 𝑤 〉 ] ~R = 𝐵 → ( 𝐴 ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = ( 𝐴 ·R 𝐵 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( [ 〈 𝑧 , 𝑤 〉 ] ~R = 𝐵 → ( ( 𝐴 ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ∈ ( ( P × P ) / ~R ) ↔ ( 𝐴 ·R 𝐵 ) ∈ ( ( P × P ) / ~R ) ) ) |
| 6 | mulsrpr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ) | |
| 7 | mulclpr | ⊢ ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 ·P 𝑧 ) ∈ P ) | |
| 8 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑦 ·P 𝑤 ) ∈ P ) | |
| 9 | addclpr | ⊢ ( ( ( 𝑥 ·P 𝑧 ) ∈ P ∧ ( 𝑦 ·P 𝑤 ) ∈ P ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
| 11 | 10 | an4s | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
| 12 | mulclpr | ⊢ ( ( 𝑥 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑥 ·P 𝑤 ) ∈ P ) | |
| 13 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑦 ·P 𝑧 ) ∈ P ) | |
| 14 | addclpr | ⊢ ( ( ( 𝑥 ·P 𝑤 ) ∈ P ∧ ( 𝑦 ·P 𝑧 ) ∈ P ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) | |
| 15 | 12 13 14 | syl2an | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) |
| 16 | 15 | an42s | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) |
| 17 | 11 16 | jca | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) ) |
| 18 | opelxpi | ⊢ ( ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) → 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ∈ ( P × P ) ) | |
| 19 | enrex | ⊢ ~R ∈ V | |
| 20 | 19 | ecelqsi | ⊢ ( 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ∈ ( P × P ) → [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ∈ ( ( P × P ) / ~R ) ) |
| 21 | 17 18 20 | 3syl | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ∈ ( ( P × P ) / ~R ) ) |
| 22 | 6 21 | eqeltrd | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ∈ ( ( P × P ) / ~R ) ) |
| 23 | 1 3 5 22 | 2ecoptocl | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 𝐴 ·R 𝐵 ) ∈ ( ( P × P ) / ~R ) ) |
| 24 | 23 1 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 𝐴 ·R 𝐵 ) ∈ R ) |