This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pn0sr | ⊢ ( 𝐴 ∈ R → ( 𝐴 +R ( 𝐴 ·R -1R ) ) = 0R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1idsr | ⊢ ( 𝐴 ∈ R → ( 𝐴 ·R 1R ) = 𝐴 ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝐴 ∈ R → ( ( 𝐴 ·R 1R ) +R ( 𝐴 ·R -1R ) ) = ( 𝐴 +R ( 𝐴 ·R -1R ) ) ) |
| 3 | distrsr | ⊢ ( 𝐴 ·R ( -1R +R 1R ) ) = ( ( 𝐴 ·R -1R ) +R ( 𝐴 ·R 1R ) ) | |
| 4 | m1p1sr | ⊢ ( -1R +R 1R ) = 0R | |
| 5 | 4 | oveq2i | ⊢ ( 𝐴 ·R ( -1R +R 1R ) ) = ( 𝐴 ·R 0R ) |
| 6 | addcomsr | ⊢ ( ( 𝐴 ·R -1R ) +R ( 𝐴 ·R 1R ) ) = ( ( 𝐴 ·R 1R ) +R ( 𝐴 ·R -1R ) ) | |
| 7 | 3 5 6 | 3eqtr3i | ⊢ ( 𝐴 ·R 0R ) = ( ( 𝐴 ·R 1R ) +R ( 𝐴 ·R -1R ) ) |
| 8 | 00sr | ⊢ ( 𝐴 ∈ R → ( 𝐴 ·R 0R ) = 0R ) | |
| 9 | 7 8 | eqtr3id | ⊢ ( 𝐴 ∈ R → ( ( 𝐴 ·R 1R ) +R ( 𝐴 ·R -1R ) ) = 0R ) |
| 10 | 2 9 | eqtr3d | ⊢ ( 𝐴 ∈ R → ( 𝐴 +R ( 𝐴 ·R -1R ) ) = 0R ) |