This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of signed reals is commutative. (Contributed by NM, 31-Aug-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcomsr | ⊢ ( 𝐴 +R 𝐵 ) = ( 𝐵 +R 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
| 2 | addsrpr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R +R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = [ 〈 ( 𝑥 +P 𝑧 ) , ( 𝑦 +P 𝑤 ) 〉 ] ~R ) | |
| 3 | addsrpr | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ~R +R [ 〈 𝑥 , 𝑦 〉 ] ~R ) = [ 〈 ( 𝑧 +P 𝑥 ) , ( 𝑤 +P 𝑦 ) 〉 ] ~R ) | |
| 4 | addcompr | ⊢ ( 𝑥 +P 𝑧 ) = ( 𝑧 +P 𝑥 ) | |
| 5 | addcompr | ⊢ ( 𝑦 +P 𝑤 ) = ( 𝑤 +P 𝑦 ) | |
| 6 | 1 2 3 4 5 | ecovcom | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 𝐴 +R 𝐵 ) = ( 𝐵 +R 𝐴 ) ) |
| 7 | dmaddsr | ⊢ dom +R = ( R × R ) | |
| 8 | 7 | ndmovcom | ⊢ ( ¬ ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 𝐴 +R 𝐵 ) = ( 𝐵 +R 𝐴 ) ) |
| 9 | 6 8 | pm2.61i | ⊢ ( 𝐴 +R 𝐵 ) = ( 𝐵 +R 𝐴 ) |