This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulgt0sr | ⊢ ( ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) → 0R <R ( 𝐴 ·R 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelsr | ⊢ <R ⊆ ( R × R ) | |
| 2 | 1 | brel | ⊢ ( 0R <R 𝐴 → ( 0R ∈ R ∧ 𝐴 ∈ R ) ) |
| 3 | 2 | simprd | ⊢ ( 0R <R 𝐴 → 𝐴 ∈ R ) |
| 4 | 1 | brel | ⊢ ( 0R <R 𝐵 → ( 0R ∈ R ∧ 𝐵 ∈ R ) ) |
| 5 | 4 | simprd | ⊢ ( 0R <R 𝐵 → 𝐵 ∈ R ) |
| 6 | 3 5 | anim12i | ⊢ ( ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) → ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) ) |
| 7 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
| 8 | breq2 | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → ( 0R <R [ 〈 𝑥 , 𝑦 〉 ] ~R ↔ 0R <R 𝐴 ) ) | |
| 9 | 8 | anbi1d | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → ( ( 0R <R [ 〈 𝑥 , 𝑦 〉 ] ~R ∧ 0R <R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ↔ ( 0R <R 𝐴 ∧ 0R <R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ) ) |
| 10 | oveq1 | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = ( 𝐴 ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ) | |
| 11 | 10 | breq2d | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → ( 0R <R ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ↔ 0R <R ( 𝐴 ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ) ) |
| 12 | 9 11 | imbi12d | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → ( ( ( 0R <R [ 〈 𝑥 , 𝑦 〉 ] ~R ∧ 0R <R [ 〈 𝑧 , 𝑤 〉 ] ~R ) → 0R <R ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ) ↔ ( ( 0R <R 𝐴 ∧ 0R <R [ 〈 𝑧 , 𝑤 〉 ] ~R ) → 0R <R ( 𝐴 ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ) ) ) |
| 13 | breq2 | ⊢ ( [ 〈 𝑧 , 𝑤 〉 ] ~R = 𝐵 → ( 0R <R [ 〈 𝑧 , 𝑤 〉 ] ~R ↔ 0R <R 𝐵 ) ) | |
| 14 | 13 | anbi2d | ⊢ ( [ 〈 𝑧 , 𝑤 〉 ] ~R = 𝐵 → ( ( 0R <R 𝐴 ∧ 0R <R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ↔ ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) ) ) |
| 15 | oveq2 | ⊢ ( [ 〈 𝑧 , 𝑤 〉 ] ~R = 𝐵 → ( 𝐴 ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = ( 𝐴 ·R 𝐵 ) ) | |
| 16 | 15 | breq2d | ⊢ ( [ 〈 𝑧 , 𝑤 〉 ] ~R = 𝐵 → ( 0R <R ( 𝐴 ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ↔ 0R <R ( 𝐴 ·R 𝐵 ) ) ) |
| 17 | 14 16 | imbi12d | ⊢ ( [ 〈 𝑧 , 𝑤 〉 ] ~R = 𝐵 → ( ( ( 0R <R 𝐴 ∧ 0R <R [ 〈 𝑧 , 𝑤 〉 ] ~R ) → 0R <R ( 𝐴 ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ) ↔ ( ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) → 0R <R ( 𝐴 ·R 𝐵 ) ) ) ) |
| 18 | gt0srpr | ⊢ ( 0R <R [ 〈 𝑥 , 𝑦 〉 ] ~R ↔ 𝑦 <P 𝑥 ) | |
| 19 | gt0srpr | ⊢ ( 0R <R [ 〈 𝑧 , 𝑤 〉 ] ~R ↔ 𝑤 <P 𝑧 ) | |
| 20 | 18 19 | anbi12i | ⊢ ( ( 0R <R [ 〈 𝑥 , 𝑦 〉 ] ~R ∧ 0R <R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ↔ ( 𝑦 <P 𝑥 ∧ 𝑤 <P 𝑧 ) ) |
| 21 | simprr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → 𝑤 ∈ P ) | |
| 22 | mulclpr | ⊢ ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 ·P 𝑧 ) ∈ P ) | |
| 23 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑦 ·P 𝑤 ) ∈ P ) | |
| 24 | addclpr | ⊢ ( ( ( 𝑥 ·P 𝑧 ) ∈ P ∧ ( 𝑦 ·P 𝑤 ) ∈ P ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) | |
| 25 | 22 23 24 | syl2an | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
| 26 | 25 | an4s | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
| 27 | ltexpri | ⊢ ( 𝑦 <P 𝑥 → ∃ 𝑣 ∈ P ( 𝑦 +P 𝑣 ) = 𝑥 ) | |
| 28 | ltexpri | ⊢ ( 𝑤 <P 𝑧 → ∃ 𝑢 ∈ P ( 𝑤 +P 𝑢 ) = 𝑧 ) | |
| 29 | mulclpr | ⊢ ( ( 𝑣 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑣 ·P 𝑤 ) ∈ P ) | |
| 30 | oveq12 | ⊢ ( ( ( 𝑦 +P 𝑣 ) = 𝑥 ∧ ( 𝑤 +P 𝑢 ) = 𝑧 ) → ( ( 𝑦 +P 𝑣 ) ·P ( 𝑤 +P 𝑢 ) ) = ( 𝑥 ·P 𝑧 ) ) | |
| 31 | 30 | oveq1d | ⊢ ( ( ( 𝑦 +P 𝑣 ) = 𝑥 ∧ ( 𝑤 +P 𝑢 ) = 𝑧 ) → ( ( ( 𝑦 +P 𝑣 ) ·P ( 𝑤 +P 𝑢 ) ) +P ( ( 𝑦 ·P 𝑤 ) +P ( 𝑣 ·P 𝑤 ) ) ) = ( ( 𝑥 ·P 𝑧 ) +P ( ( 𝑦 ·P 𝑤 ) +P ( 𝑣 ·P 𝑤 ) ) ) ) |
| 32 | distrpr | ⊢ ( 𝑦 ·P ( 𝑤 +P 𝑢 ) ) = ( ( 𝑦 ·P 𝑤 ) +P ( 𝑦 ·P 𝑢 ) ) | |
| 33 | oveq2 | ⊢ ( ( 𝑤 +P 𝑢 ) = 𝑧 → ( 𝑦 ·P ( 𝑤 +P 𝑢 ) ) = ( 𝑦 ·P 𝑧 ) ) | |
| 34 | 32 33 | eqtr3id | ⊢ ( ( 𝑤 +P 𝑢 ) = 𝑧 → ( ( 𝑦 ·P 𝑤 ) +P ( 𝑦 ·P 𝑢 ) ) = ( 𝑦 ·P 𝑧 ) ) |
| 35 | 34 | oveq1d | ⊢ ( ( 𝑤 +P 𝑢 ) = 𝑧 → ( ( ( 𝑦 ·P 𝑤 ) +P ( 𝑦 ·P 𝑢 ) ) +P ( ( 𝑣 ·P 𝑤 ) +P ( 𝑣 ·P 𝑢 ) ) ) = ( ( 𝑦 ·P 𝑧 ) +P ( ( 𝑣 ·P 𝑤 ) +P ( 𝑣 ·P 𝑢 ) ) ) ) |
| 36 | vex | ⊢ 𝑦 ∈ V | |
| 37 | vex | ⊢ 𝑣 ∈ V | |
| 38 | vex | ⊢ 𝑤 ∈ V | |
| 39 | mulcompr | ⊢ ( 𝑓 ·P 𝑔 ) = ( 𝑔 ·P 𝑓 ) | |
| 40 | distrpr | ⊢ ( 𝑓 ·P ( 𝑔 +P ℎ ) ) = ( ( 𝑓 ·P 𝑔 ) +P ( 𝑓 ·P ℎ ) ) | |
| 41 | 36 37 38 39 40 | caovdir | ⊢ ( ( 𝑦 +P 𝑣 ) ·P 𝑤 ) = ( ( 𝑦 ·P 𝑤 ) +P ( 𝑣 ·P 𝑤 ) ) |
| 42 | vex | ⊢ 𝑢 ∈ V | |
| 43 | 36 37 42 39 40 | caovdir | ⊢ ( ( 𝑦 +P 𝑣 ) ·P 𝑢 ) = ( ( 𝑦 ·P 𝑢 ) +P ( 𝑣 ·P 𝑢 ) ) |
| 44 | 41 43 | oveq12i | ⊢ ( ( ( 𝑦 +P 𝑣 ) ·P 𝑤 ) +P ( ( 𝑦 +P 𝑣 ) ·P 𝑢 ) ) = ( ( ( 𝑦 ·P 𝑤 ) +P ( 𝑣 ·P 𝑤 ) ) +P ( ( 𝑦 ·P 𝑢 ) +P ( 𝑣 ·P 𝑢 ) ) ) |
| 45 | distrpr | ⊢ ( ( 𝑦 +P 𝑣 ) ·P ( 𝑤 +P 𝑢 ) ) = ( ( ( 𝑦 +P 𝑣 ) ·P 𝑤 ) +P ( ( 𝑦 +P 𝑣 ) ·P 𝑢 ) ) | |
| 46 | ovex | ⊢ ( 𝑦 ·P 𝑤 ) ∈ V | |
| 47 | ovex | ⊢ ( 𝑦 ·P 𝑢 ) ∈ V | |
| 48 | ovex | ⊢ ( 𝑣 ·P 𝑤 ) ∈ V | |
| 49 | addcompr | ⊢ ( 𝑓 +P 𝑔 ) = ( 𝑔 +P 𝑓 ) | |
| 50 | addasspr | ⊢ ( ( 𝑓 +P 𝑔 ) +P ℎ ) = ( 𝑓 +P ( 𝑔 +P ℎ ) ) | |
| 51 | ovex | ⊢ ( 𝑣 ·P 𝑢 ) ∈ V | |
| 52 | 46 47 48 49 50 51 | caov4 | ⊢ ( ( ( 𝑦 ·P 𝑤 ) +P ( 𝑦 ·P 𝑢 ) ) +P ( ( 𝑣 ·P 𝑤 ) +P ( 𝑣 ·P 𝑢 ) ) ) = ( ( ( 𝑦 ·P 𝑤 ) +P ( 𝑣 ·P 𝑤 ) ) +P ( ( 𝑦 ·P 𝑢 ) +P ( 𝑣 ·P 𝑢 ) ) ) |
| 53 | 44 45 52 | 3eqtr4i | ⊢ ( ( 𝑦 +P 𝑣 ) ·P ( 𝑤 +P 𝑢 ) ) = ( ( ( 𝑦 ·P 𝑤 ) +P ( 𝑦 ·P 𝑢 ) ) +P ( ( 𝑣 ·P 𝑤 ) +P ( 𝑣 ·P 𝑢 ) ) ) |
| 54 | ovex | ⊢ ( 𝑦 ·P 𝑧 ) ∈ V | |
| 55 | 48 54 51 49 50 | caov12 | ⊢ ( ( 𝑣 ·P 𝑤 ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑣 ·P 𝑢 ) ) ) = ( ( 𝑦 ·P 𝑧 ) +P ( ( 𝑣 ·P 𝑤 ) +P ( 𝑣 ·P 𝑢 ) ) ) |
| 56 | 35 53 55 | 3eqtr4g | ⊢ ( ( 𝑤 +P 𝑢 ) = 𝑧 → ( ( 𝑦 +P 𝑣 ) ·P ( 𝑤 +P 𝑢 ) ) = ( ( 𝑣 ·P 𝑤 ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑣 ·P 𝑢 ) ) ) ) |
| 57 | oveq1 | ⊢ ( ( 𝑦 +P 𝑣 ) = 𝑥 → ( ( 𝑦 +P 𝑣 ) ·P 𝑤 ) = ( 𝑥 ·P 𝑤 ) ) | |
| 58 | 41 57 | eqtr3id | ⊢ ( ( 𝑦 +P 𝑣 ) = 𝑥 → ( ( 𝑦 ·P 𝑤 ) +P ( 𝑣 ·P 𝑤 ) ) = ( 𝑥 ·P 𝑤 ) ) |
| 59 | 56 58 | oveqan12rd | ⊢ ( ( ( 𝑦 +P 𝑣 ) = 𝑥 ∧ ( 𝑤 +P 𝑢 ) = 𝑧 ) → ( ( ( 𝑦 +P 𝑣 ) ·P ( 𝑤 +P 𝑢 ) ) +P ( ( 𝑦 ·P 𝑤 ) +P ( 𝑣 ·P 𝑤 ) ) ) = ( ( ( 𝑣 ·P 𝑤 ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑣 ·P 𝑢 ) ) ) +P ( 𝑥 ·P 𝑤 ) ) ) |
| 60 | 31 59 | eqtr3d | ⊢ ( ( ( 𝑦 +P 𝑣 ) = 𝑥 ∧ ( 𝑤 +P 𝑢 ) = 𝑧 ) → ( ( 𝑥 ·P 𝑧 ) +P ( ( 𝑦 ·P 𝑤 ) +P ( 𝑣 ·P 𝑤 ) ) ) = ( ( ( 𝑣 ·P 𝑤 ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑣 ·P 𝑢 ) ) ) +P ( 𝑥 ·P 𝑤 ) ) ) |
| 61 | addasspr | ⊢ ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) +P ( 𝑣 ·P 𝑤 ) ) = ( ( 𝑥 ·P 𝑧 ) +P ( ( 𝑦 ·P 𝑤 ) +P ( 𝑣 ·P 𝑤 ) ) ) | |
| 62 | addcompr | ⊢ ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) +P ( 𝑣 ·P 𝑤 ) ) = ( ( 𝑣 ·P 𝑤 ) +P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) | |
| 63 | 61 62 | eqtr3i | ⊢ ( ( 𝑥 ·P 𝑧 ) +P ( ( 𝑦 ·P 𝑤 ) +P ( 𝑣 ·P 𝑤 ) ) ) = ( ( 𝑣 ·P 𝑤 ) +P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) |
| 64 | addasspr | ⊢ ( ( ( 𝑣 ·P 𝑤 ) +P ( 𝑥 ·P 𝑤 ) ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑣 ·P 𝑢 ) ) ) = ( ( 𝑣 ·P 𝑤 ) +P ( ( 𝑥 ·P 𝑤 ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑣 ·P 𝑢 ) ) ) ) | |
| 65 | ovex | ⊢ ( ( 𝑦 ·P 𝑧 ) +P ( 𝑣 ·P 𝑢 ) ) ∈ V | |
| 66 | ovex | ⊢ ( 𝑥 ·P 𝑤 ) ∈ V | |
| 67 | 48 65 66 49 50 | caov32 | ⊢ ( ( ( 𝑣 ·P 𝑤 ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑣 ·P 𝑢 ) ) ) +P ( 𝑥 ·P 𝑤 ) ) = ( ( ( 𝑣 ·P 𝑤 ) +P ( 𝑥 ·P 𝑤 ) ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑣 ·P 𝑢 ) ) ) |
| 68 | addasspr | ⊢ ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( 𝑣 ·P 𝑢 ) ) = ( ( 𝑥 ·P 𝑤 ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑣 ·P 𝑢 ) ) ) | |
| 69 | 68 | oveq2i | ⊢ ( ( 𝑣 ·P 𝑤 ) +P ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( 𝑣 ·P 𝑢 ) ) ) = ( ( 𝑣 ·P 𝑤 ) +P ( ( 𝑥 ·P 𝑤 ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑣 ·P 𝑢 ) ) ) ) |
| 70 | 64 67 69 | 3eqtr4i | ⊢ ( ( ( 𝑣 ·P 𝑤 ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑣 ·P 𝑢 ) ) ) +P ( 𝑥 ·P 𝑤 ) ) = ( ( 𝑣 ·P 𝑤 ) +P ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( 𝑣 ·P 𝑢 ) ) ) |
| 71 | 60 63 70 | 3eqtr3g | ⊢ ( ( ( 𝑦 +P 𝑣 ) = 𝑥 ∧ ( 𝑤 +P 𝑢 ) = 𝑧 ) → ( ( 𝑣 ·P 𝑤 ) +P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) = ( ( 𝑣 ·P 𝑤 ) +P ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( 𝑣 ·P 𝑢 ) ) ) ) |
| 72 | addcanpr | ⊢ ( ( ( 𝑣 ·P 𝑤 ) ∈ P ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( ( ( 𝑣 ·P 𝑤 ) +P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) = ( ( 𝑣 ·P 𝑤 ) +P ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( 𝑣 ·P 𝑢 ) ) ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) = ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( 𝑣 ·P 𝑢 ) ) ) ) | |
| 73 | 71 72 | syl5 | ⊢ ( ( ( 𝑣 ·P 𝑤 ) ∈ P ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( ( ( 𝑦 +P 𝑣 ) = 𝑥 ∧ ( 𝑤 +P 𝑢 ) = 𝑧 ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) = ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( 𝑣 ·P 𝑢 ) ) ) ) |
| 74 | eqcom | ⊢ ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) = ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( 𝑣 ·P 𝑢 ) ) ↔ ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( 𝑣 ·P 𝑢 ) ) = ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) | |
| 75 | ltaddpr2 | ⊢ ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P → ( ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( 𝑣 ·P 𝑢 ) ) = ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) | |
| 76 | 74 75 | biimtrid | ⊢ ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P → ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) = ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( 𝑣 ·P 𝑢 ) ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) |
| 77 | 76 | adantl | ⊢ ( ( ( 𝑣 ·P 𝑤 ) ∈ P ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) = ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( 𝑣 ·P 𝑢 ) ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) |
| 78 | 73 77 | syld | ⊢ ( ( ( 𝑣 ·P 𝑤 ) ∈ P ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( ( ( 𝑦 +P 𝑣 ) = 𝑥 ∧ ( 𝑤 +P 𝑢 ) = 𝑧 ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) |
| 79 | 29 78 | sylan | ⊢ ( ( ( 𝑣 ∈ P ∧ 𝑤 ∈ P ) ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( ( ( 𝑦 +P 𝑣 ) = 𝑥 ∧ ( 𝑤 +P 𝑢 ) = 𝑧 ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) |
| 80 | 79 | a1d | ⊢ ( ( ( 𝑣 ∈ P ∧ 𝑤 ∈ P ) ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( 𝑢 ∈ P → ( ( ( 𝑦 +P 𝑣 ) = 𝑥 ∧ ( 𝑤 +P 𝑢 ) = 𝑧 ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) ) |
| 81 | 80 | exp4a | ⊢ ( ( ( 𝑣 ∈ P ∧ 𝑤 ∈ P ) ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( 𝑢 ∈ P → ( ( 𝑦 +P 𝑣 ) = 𝑥 → ( ( 𝑤 +P 𝑢 ) = 𝑧 → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) ) ) |
| 82 | 81 | com34 | ⊢ ( ( ( 𝑣 ∈ P ∧ 𝑤 ∈ P ) ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( 𝑢 ∈ P → ( ( 𝑤 +P 𝑢 ) = 𝑧 → ( ( 𝑦 +P 𝑣 ) = 𝑥 → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) ) ) |
| 83 | 82 | rexlimdv | ⊢ ( ( ( 𝑣 ∈ P ∧ 𝑤 ∈ P ) ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( ∃ 𝑢 ∈ P ( 𝑤 +P 𝑢 ) = 𝑧 → ( ( 𝑦 +P 𝑣 ) = 𝑥 → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) ) |
| 84 | 83 | expl | ⊢ ( 𝑣 ∈ P → ( ( 𝑤 ∈ P ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( ∃ 𝑢 ∈ P ( 𝑤 +P 𝑢 ) = 𝑧 → ( ( 𝑦 +P 𝑣 ) = 𝑥 → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) ) ) |
| 85 | 84 | com24 | ⊢ ( 𝑣 ∈ P → ( ( 𝑦 +P 𝑣 ) = 𝑥 → ( ∃ 𝑢 ∈ P ( 𝑤 +P 𝑢 ) = 𝑧 → ( ( 𝑤 ∈ P ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) ) ) |
| 86 | 85 | rexlimiv | ⊢ ( ∃ 𝑣 ∈ P ( 𝑦 +P 𝑣 ) = 𝑥 → ( ∃ 𝑢 ∈ P ( 𝑤 +P 𝑢 ) = 𝑧 → ( ( 𝑤 ∈ P ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) ) |
| 87 | 27 28 86 | syl2im | ⊢ ( 𝑦 <P 𝑥 → ( 𝑤 <P 𝑧 → ( ( 𝑤 ∈ P ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) ) |
| 88 | 87 | imp | ⊢ ( ( 𝑦 <P 𝑥 ∧ 𝑤 <P 𝑧 ) → ( ( 𝑤 ∈ P ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) |
| 89 | 88 | com12 | ⊢ ( ( 𝑤 ∈ P ∧ ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) → ( ( 𝑦 <P 𝑥 ∧ 𝑤 <P 𝑧 ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) |
| 90 | 21 26 89 | syl2anc | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑦 <P 𝑥 ∧ 𝑤 <P 𝑧 ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) |
| 91 | mulsrpr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ) | |
| 92 | 91 | breq2d | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( 0R <R ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ↔ 0R <R [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ) ) |
| 93 | gt0srpr | ⊢ ( 0R <R [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ↔ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) | |
| 94 | 92 93 | bitrdi | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( 0R <R ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ↔ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) <P ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ) ) |
| 95 | 90 94 | sylibrd | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑦 <P 𝑥 ∧ 𝑤 <P 𝑧 ) → 0R <R ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ) ) |
| 96 | 20 95 | biimtrid | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 0R <R [ 〈 𝑥 , 𝑦 〉 ] ~R ∧ 0R <R [ 〈 𝑧 , 𝑤 〉 ] ~R ) → 0R <R ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) ) ) |
| 97 | 7 12 17 96 | 2ecoptocl | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) → 0R <R ( 𝐴 ·R 𝐵 ) ) ) |
| 98 | 6 97 | mpcom | ⊢ ( ( 0R <R 𝐴 ∧ 0R <R 𝐵 ) → 0R <R ( 𝐴 ·R 𝐵 ) ) |