This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of the union of a closed subspace with a singleton equals the span of its union with an orthogonal singleton. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spanunsn.1 | ⊢ 𝐴 ∈ Cℋ | |
| spanunsn.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | spanunsni | ⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spanunsn.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | spanunsn.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 1 | chshii | ⊢ 𝐴 ∈ Sℋ |
| 4 | snssi | ⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) | |
| 5 | spancl | ⊢ ( { 𝐵 } ⊆ ℋ → ( span ‘ { 𝐵 } ) ∈ Sℋ ) | |
| 6 | 2 4 5 | mp2b | ⊢ ( span ‘ { 𝐵 } ) ∈ Sℋ |
| 7 | 3 6 | shseli | ⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { 𝐵 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 8 | 2 | elspansni | ⊢ ( 𝑧 ∈ ( span ‘ { 𝐵 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝐵 ) ) |
| 9 | 1 2 | pjclii | ⊢ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ 𝐴 |
| 10 | shmulcl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ 𝐴 ) → ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) | |
| 11 | 3 9 10 | mp3an13 | ⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) |
| 12 | shaddcl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ∈ 𝐴 ) | |
| 13 | 11 12 | syl3an3 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ∈ 𝐴 ) |
| 14 | 3 13 | mp3an1 | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ∈ 𝐴 ) |
| 15 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 16 | 15 2 | pjhclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ |
| 17 | spansnmul | ⊢ ( ( ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) | |
| 18 | 16 17 | mpan | ⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 20 | 1 2 | pjpji | ⊢ 𝐵 = ( ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) |
| 21 | 20 | oveq2i | ⊢ ( 𝑤 ·ℎ 𝐵 ) = ( 𝑤 ·ℎ ( ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) |
| 22 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ |
| 23 | ax-hvdistr1 | ⊢ ( ( 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ ) → ( 𝑤 ·ℎ ( ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) | |
| 24 | 22 16 23 | mp3an23 | ⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 25 | 21 24 | eqtrid | ⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ 𝐵 ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ 𝐵 ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 27 | 26 | oveq2d | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( 𝑦 +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 28 | 1 | cheli | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
| 29 | hvmulcl | ⊢ ( ( 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ ) → ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) | |
| 30 | 22 29 | mpan2 | ⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) |
| 31 | hvmulcl | ⊢ ( ( 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ ) → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) | |
| 32 | 16 31 | mpan2 | ⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) |
| 33 | 30 32 | jca | ⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) ) |
| 34 | ax-hvass | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) → ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑦 +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) | |
| 35 | 34 | 3expb | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) ) → ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑦 +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 36 | 28 33 35 | syl2an | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑦 +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 37 | 27 36 | eqtr4d | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 38 | rspceov | ⊢ ( ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ∈ 𝐴 ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∧ ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( 𝑣 +ℎ 𝑢 ) ) | |
| 39 | 14 19 37 38 | syl3anc | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
| 40 | snssi | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ → { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ ) | |
| 41 | spancl | ⊢ ( { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ → ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∈ Sℋ ) | |
| 42 | 16 40 41 | mp2b | ⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∈ Sℋ |
| 43 | 3 42 | shseli | ⊢ ( ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
| 44 | 39 43 | sylibr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 45 | oveq2 | ⊢ ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) | |
| 46 | 45 | eqeq2d | ⊢ ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) ) |
| 47 | 46 | biimpa | ⊢ ( ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) → 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) |
| 48 | eleq1 | ⊢ ( 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ↔ ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) | |
| 49 | 48 | biimparc | ⊢ ( ( ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ∧ 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 50 | 44 47 49 | syl2an | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) ∧ ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 51 | 50 | exp43 | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑤 ∈ ℂ → ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) ) ) |
| 52 | 51 | rexlimdv | ⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝐵 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) ) |
| 53 | 8 52 | biimtrid | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ ( span ‘ { 𝐵 } ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) ) |
| 54 | 53 | rexlimdv | ⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑧 ∈ ( span ‘ { 𝐵 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) |
| 55 | 54 | rexlimiv | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { 𝐵 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 56 | 7 55 | sylbi | ⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 57 | 3 42 | shseli | ⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 58 | 16 | elspansni | ⊢ ( 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ↔ ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) |
| 59 | negcl | ⊢ ( 𝑤 ∈ ℂ → - 𝑤 ∈ ℂ ) | |
| 60 | shmulcl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ - 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ 𝐴 ) → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) | |
| 61 | 3 9 60 | mp3an13 | ⊢ ( - 𝑤 ∈ ℂ → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) |
| 62 | 59 61 | syl | ⊢ ( 𝑤 ∈ ℂ → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) |
| 63 | shaddcl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ) | |
| 64 | 62 63 | syl3an2 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑤 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ) |
| 65 | 3 64 | mp3an1 | ⊢ ( ( 𝑤 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ) |
| 66 | 65 | ancoms | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ) |
| 67 | spansnmul | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ) | |
| 68 | 2 67 | mpan | ⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ) |
| 69 | 68 | adantl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ) |
| 70 | hvm1neg | ⊢ ( ( 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ ) → ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) = ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) | |
| 71 | 22 70 | mpan2 | ⊢ ( 𝑤 ∈ ℂ → ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) = ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
| 72 | 71 | oveq2d | ⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
| 73 | hvnegid | ⊢ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) = 0ℎ ) | |
| 74 | 30 73 | syl | ⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) = 0ℎ ) |
| 75 | hvmulcl | ⊢ ( ( - 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ ) → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) | |
| 76 | 59 22 75 | sylancl | ⊢ ( 𝑤 ∈ ℂ → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) |
| 77 | ax-hvcom | ⊢ ( ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) = ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) | |
| 78 | 30 76 77 | syl2anc | ⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) = ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
| 79 | 72 74 78 | 3eqtr3d | ⊢ ( 𝑤 ∈ ℂ → 0ℎ = ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
| 80 | 79 | adantl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → 0ℎ = ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
| 81 | 80 | oveq1d | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 0ℎ +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 82 | hvaddcl | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ℋ ) | |
| 83 | 28 32 82 | syl2an | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ℋ ) |
| 84 | hvaddlid | ⊢ ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ℋ → ( 0ℎ +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) | |
| 85 | 83 84 | syl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 0ℎ +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 86 | 76 30 | jca | ⊢ ( 𝑤 ∈ ℂ → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) ) |
| 87 | 86 | adantl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) ) |
| 88 | 28 32 | anim12i | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) ) |
| 89 | hvadd4 | ⊢ ( ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) ∧ ( 𝑦 ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) ) → ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) | |
| 90 | 87 88 89 | syl2anc | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 91 | 81 85 90 | 3eqtr3d | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 92 | 26 | oveq2d | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 93 | 91 92 | eqtr4d | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) |
| 94 | rspceov | ⊢ ( ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ∧ ( 𝑤 ·ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ∧ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { 𝐵 } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑣 +ℎ 𝑢 ) ) | |
| 95 | 66 69 93 94 | syl3anc | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { 𝐵 } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
| 96 | 3 6 | shseli | ⊢ ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { 𝐵 } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
| 97 | 95 96 | sylibr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 98 | oveq2 | ⊢ ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) | |
| 99 | 98 | eqeq2d | ⊢ ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 100 | 99 | biimpa | ⊢ ( ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) → 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 101 | eleq1 | ⊢ ( 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ↔ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) | |
| 102 | 101 | biimparc | ⊢ ( ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ∧ 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 103 | 97 100 102 | syl2an | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) ∧ ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 104 | 103 | exp43 | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑤 ∈ ℂ → ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) ) ) |
| 105 | 104 | rexlimdv | ⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) ) |
| 106 | 58 105 | biimtrid | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) ) |
| 107 | 106 | rexlimdv | ⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) |
| 108 | 107 | rexlimiv | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 109 | 57 108 | sylbi | ⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 110 | 56 109 | impbii | ⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ↔ 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 111 | 110 | eqriv | ⊢ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 112 | 1 | chssii | ⊢ 𝐴 ⊆ ℋ |
| 113 | 2 4 | ax-mp | ⊢ { 𝐵 } ⊆ ℋ |
| 114 | 112 113 | spanuni | ⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { 𝐵 } ) ) |
| 115 | spanid | ⊢ ( 𝐴 ∈ Sℋ → ( span ‘ 𝐴 ) = 𝐴 ) | |
| 116 | 3 115 | ax-mp | ⊢ ( span ‘ 𝐴 ) = 𝐴 |
| 117 | 116 | oveq1i | ⊢ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) |
| 118 | 114 117 | eqtri | ⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) |
| 119 | 16 40 | ax-mp | ⊢ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ |
| 120 | 112 119 | spanuni | ⊢ ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 121 | 116 | oveq1i | ⊢ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 122 | 120 121 | eqtri | ⊢ ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 123 | 111 118 122 | 3eqtr4i | ⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |