This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a union is the subspace sum of spans. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spanun.1 | ⊢ 𝐴 ⊆ ℋ | |
| spanun.2 | ⊢ 𝐵 ⊆ ℋ | ||
| Assertion | spanuni | ⊢ ( span ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spanun.1 | ⊢ 𝐴 ⊆ ℋ | |
| 2 | spanun.2 | ⊢ 𝐵 ⊆ ℋ | |
| 3 | spancl | ⊢ ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) ∈ Sℋ ) | |
| 4 | 1 3 | ax-mp | ⊢ ( span ‘ 𝐴 ) ∈ Sℋ |
| 5 | spancl | ⊢ ( 𝐵 ⊆ ℋ → ( span ‘ 𝐵 ) ∈ Sℋ ) | |
| 6 | 2 5 | ax-mp | ⊢ ( span ‘ 𝐵 ) ∈ Sℋ |
| 7 | 4 6 | shscli | ⊢ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ∈ Sℋ |
| 8 | 7 | shssii | ⊢ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ⊆ ℋ |
| 9 | spanss2 | ⊢ ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( span ‘ 𝐴 ) ) | |
| 10 | 1 9 | ax-mp | ⊢ 𝐴 ⊆ ( span ‘ 𝐴 ) |
| 11 | spanss2 | ⊢ ( 𝐵 ⊆ ℋ → 𝐵 ⊆ ( span ‘ 𝐵 ) ) | |
| 12 | 2 11 | ax-mp | ⊢ 𝐵 ⊆ ( span ‘ 𝐵 ) |
| 13 | unss12 | ⊢ ( ( 𝐴 ⊆ ( span ‘ 𝐴 ) ∧ 𝐵 ⊆ ( span ‘ 𝐵 ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ( ( span ‘ 𝐴 ) ∪ ( span ‘ 𝐵 ) ) ) | |
| 14 | 10 12 13 | mp2an | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( ( span ‘ 𝐴 ) ∪ ( span ‘ 𝐵 ) ) |
| 15 | 4 6 | shunssi | ⊢ ( ( span ‘ 𝐴 ) ∪ ( span ‘ 𝐵 ) ) ⊆ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) |
| 16 | 14 15 | sstri | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) |
| 17 | spanss | ⊢ ( ( ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ⊆ ℋ ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ) → ( span ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( span ‘ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ) ) | |
| 18 | 8 16 17 | mp2an | ⊢ ( span ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( span ‘ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ) |
| 19 | spanid | ⊢ ( ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ∈ Sℋ → ( span ‘ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ) | |
| 20 | 7 19 | ax-mp | ⊢ ( span ‘ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) |
| 21 | 18 20 | sseqtri | ⊢ ( span ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) |
| 22 | 4 6 | shseli | ⊢ ( 𝑥 ∈ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ↔ ∃ 𝑧 ∈ ( span ‘ 𝐴 ) ∃ 𝑤 ∈ ( span ‘ 𝐵 ) 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) |
| 23 | r2ex | ⊢ ( ∃ 𝑧 ∈ ( span ‘ 𝐴 ) ∃ 𝑤 ∈ ( span ‘ 𝐵 ) 𝑥 = ( 𝑧 +ℎ 𝑤 ) ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 ∈ ( span ‘ 𝐴 ) ∧ 𝑤 ∈ ( span ‘ 𝐵 ) ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) | |
| 24 | 22 23 | bitri | ⊢ ( 𝑥 ∈ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 ∈ ( span ‘ 𝐴 ) ∧ 𝑤 ∈ ( span ‘ 𝐵 ) ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
| 25 | vex | ⊢ 𝑧 ∈ V | |
| 26 | 25 | elspani | ⊢ ( 𝐴 ⊆ ℋ → ( 𝑧 ∈ ( span ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ Sℋ ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) |
| 27 | 1 26 | ax-mp | ⊢ ( 𝑧 ∈ ( span ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ Sℋ ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ) |
| 28 | vex | ⊢ 𝑤 ∈ V | |
| 29 | 28 | elspani | ⊢ ( 𝐵 ⊆ ℋ → ( 𝑤 ∈ ( span ‘ 𝐵 ) ↔ ∀ 𝑦 ∈ Sℋ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) ) |
| 30 | 2 29 | ax-mp | ⊢ ( 𝑤 ∈ ( span ‘ 𝐵 ) ↔ ∀ 𝑦 ∈ Sℋ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) |
| 31 | 27 30 | anbi12i | ⊢ ( ( 𝑧 ∈ ( span ‘ 𝐴 ) ∧ 𝑤 ∈ ( span ‘ 𝐵 ) ) ↔ ( ∀ 𝑦 ∈ Sℋ ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ Sℋ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) ) |
| 32 | r19.26 | ⊢ ( ∀ 𝑦 ∈ Sℋ ( ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ Sℋ ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ Sℋ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) ) | |
| 33 | 31 32 | bitr4i | ⊢ ( ( 𝑧 ∈ ( span ‘ 𝐴 ) ∧ 𝑤 ∈ ( span ‘ 𝐵 ) ) ↔ ∀ 𝑦 ∈ Sℋ ( ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) ) |
| 34 | r19.27v | ⊢ ( ( ∀ 𝑦 ∈ Sℋ ( ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) → ∀ 𝑦 ∈ Sℋ ( ( ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) | |
| 35 | 33 34 | sylanb | ⊢ ( ( ( 𝑧 ∈ ( span ‘ 𝐴 ) ∧ 𝑤 ∈ ( span ‘ 𝐵 ) ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) → ∀ 𝑦 ∈ Sℋ ( ( ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
| 36 | unss | ⊢ ( ( 𝐴 ⊆ 𝑦 ∧ 𝐵 ⊆ 𝑦 ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑦 ) | |
| 37 | anim12 | ⊢ ( ( ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) → ( ( 𝐴 ⊆ 𝑦 ∧ 𝐵 ⊆ 𝑦 ) → ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) ) | |
| 38 | 36 37 | biimtrrid | ⊢ ( ( ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) → ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝑦 → ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) ) |
| 39 | shaddcl | ⊢ ( ( 𝑦 ∈ Sℋ ∧ 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) → ( 𝑧 +ℎ 𝑤 ) ∈ 𝑦 ) | |
| 40 | 39 | 3expib | ⊢ ( 𝑦 ∈ Sℋ → ( ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) → ( 𝑧 +ℎ 𝑤 ) ∈ 𝑦 ) ) |
| 41 | 38 40 | sylan9r | ⊢ ( ( 𝑦 ∈ Sℋ ∧ ( ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) ) → ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝑦 → ( 𝑧 +ℎ 𝑤 ) ∈ 𝑦 ) ) |
| 42 | eleq1 | ⊢ ( 𝑥 = ( 𝑧 +ℎ 𝑤 ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝑧 +ℎ 𝑤 ) ∈ 𝑦 ) ) | |
| 43 | 42 | biimprd | ⊢ ( 𝑥 = ( 𝑧 +ℎ 𝑤 ) → ( ( 𝑧 +ℎ 𝑤 ) ∈ 𝑦 → 𝑥 ∈ 𝑦 ) ) |
| 44 | 41 43 | sylan9 | ⊢ ( ( ( 𝑦 ∈ Sℋ ∧ ( ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) → ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) |
| 45 | 44 | expl | ⊢ ( 𝑦 ∈ Sℋ → ( ( ( ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) → ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) ) |
| 46 | 45 | ralimia | ⊢ ( ∀ 𝑦 ∈ Sℋ ( ( ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) → ∀ 𝑦 ∈ Sℋ ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) |
| 47 | 1 2 | unssi | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ℋ |
| 48 | vex | ⊢ 𝑥 ∈ V | |
| 49 | 48 | elspani | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ → ( 𝑥 ∈ ( span ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ∀ 𝑦 ∈ Sℋ ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) ) |
| 50 | 47 49 | ax-mp | ⊢ ( 𝑥 ∈ ( span ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ∀ 𝑦 ∈ Sℋ ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) |
| 51 | 46 50 | sylibr | ⊢ ( ∀ 𝑦 ∈ Sℋ ( ( ( 𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦 ) ∧ ( 𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦 ) ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) → 𝑥 ∈ ( span ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 52 | 35 51 | syl | ⊢ ( ( ( 𝑧 ∈ ( span ‘ 𝐴 ) ∧ 𝑤 ∈ ( span ‘ 𝐵 ) ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) → 𝑥 ∈ ( span ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 53 | 52 | exlimivv | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 ∈ ( span ‘ 𝐴 ) ∧ 𝑤 ∈ ( span ‘ 𝐵 ) ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) → 𝑥 ∈ ( span ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 54 | 24 53 | sylbi | ⊢ ( 𝑥 ∈ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) → 𝑥 ∈ ( span ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 55 | 54 | ssriv | ⊢ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ⊆ ( span ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 56 | 21 55 | eqssi | ⊢ ( span ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) |