This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvadd4 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( 𝐵 +ℎ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvadd32 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) = ( ( 𝐴 +ℎ 𝐶 ) +ℎ 𝐵 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) +ℎ 𝐷 ) = ( ( ( 𝐴 +ℎ 𝐶 ) +ℎ 𝐵 ) +ℎ 𝐷 ) ) |
| 3 | 2 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐶 ∈ ℋ ) → ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) +ℎ 𝐷 ) = ( ( ( 𝐴 +ℎ 𝐶 ) +ℎ 𝐵 ) +ℎ 𝐷 ) ) |
| 4 | 3 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) +ℎ 𝐷 ) = ( ( ( 𝐴 +ℎ 𝐶 ) +ℎ 𝐵 ) +ℎ 𝐷 ) ) |
| 5 | hvaddcl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) | |
| 6 | ax-hvass | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) +ℎ 𝐷 ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐶 +ℎ 𝐷 ) ) ) | |
| 7 | 6 | 3expb | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) +ℎ 𝐷 ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐶 +ℎ 𝐷 ) ) ) |
| 8 | 5 7 | sylan | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) +ℎ 𝐷 ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐶 +ℎ 𝐷 ) ) ) |
| 9 | hvaddcl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 +ℎ 𝐶 ) ∈ ℋ ) | |
| 10 | ax-hvass | ⊢ ( ( ( 𝐴 +ℎ 𝐶 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( ( 𝐴 +ℎ 𝐶 ) +ℎ 𝐵 ) +ℎ 𝐷 ) = ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( 𝐵 +ℎ 𝐷 ) ) ) | |
| 11 | 10 | 3expb | ⊢ ( ( ( 𝐴 +ℎ 𝐶 ) ∈ ℋ ∧ ( 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 +ℎ 𝐶 ) +ℎ 𝐵 ) +ℎ 𝐷 ) = ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( 𝐵 +ℎ 𝐷 ) ) ) |
| 12 | 9 11 | sylan | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 +ℎ 𝐶 ) +ℎ 𝐵 ) +ℎ 𝐷 ) = ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( 𝐵 +ℎ 𝐷 ) ) ) |
| 13 | 12 | an4s | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 +ℎ 𝐶 ) +ℎ 𝐵 ) +ℎ 𝐷 ) = ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( 𝐵 +ℎ 𝐷 ) ) ) |
| 14 | 4 8 13 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( 𝐵 +ℎ 𝐷 ) ) ) |