This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a pair of vectors. (Contributed by NM, 9-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spanpr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ⊆ ( span ‘ { 𝐴 , 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnsh | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Sℋ ) | |
| 2 | spansnsh | ⊢ ( 𝐵 ∈ ℋ → ( span ‘ { 𝐵 } ) ∈ Sℋ ) | |
| 3 | shscl | ⊢ ( ( ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ ( span ‘ { 𝐵 } ) ∈ Sℋ ) → ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ∈ Sℋ ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ∈ Sℋ ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ) → ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ∈ Sℋ ) |
| 6 | 1 2 | anim12i | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ ( span ‘ { 𝐵 } ) ∈ Sℋ ) ) |
| 7 | spansnid | ⊢ ( 𝐴 ∈ ℋ → 𝐴 ∈ ( span ‘ { 𝐴 } ) ) | |
| 8 | spansnid | ⊢ ( 𝐵 ∈ ℋ → 𝐵 ∈ ( span ‘ { 𝐵 } ) ) | |
| 9 | 7 8 | anim12i | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ∈ ( span ‘ { 𝐴 } ) ∧ 𝐵 ∈ ( span ‘ { 𝐵 } ) ) ) |
| 10 | shsva | ⊢ ( ( ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ ( span ‘ { 𝐵 } ) ∈ Sℋ ) → ( ( 𝐴 ∈ ( span ‘ { 𝐴 } ) ∧ 𝐵 ∈ ( span ‘ { 𝐵 } ) ) → ( 𝐴 +ℎ 𝐵 ) ∈ ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ) ) | |
| 11 | 6 9 10 | sylc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) ∈ ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ) → ( 𝐴 +ℎ 𝐵 ) ∈ ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 13 | simpr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ) → 𝑥 ∈ ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ) | |
| 14 | elspansn3 | ⊢ ( ( ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ∈ Sℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ∧ 𝑥 ∈ ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ) → 𝑥 ∈ ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ) | |
| 15 | 5 12 13 14 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ) → 𝑥 ∈ ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 16 | 15 | ex | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ∈ ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) → 𝑥 ∈ ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ) ) |
| 17 | 16 | ssrdv | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ⊆ ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 18 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
| 19 | 18 | fveq2i | ⊢ ( span ‘ { 𝐴 , 𝐵 } ) = ( span ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) |
| 20 | snssi | ⊢ ( 𝐴 ∈ ℋ → { 𝐴 } ⊆ ℋ ) | |
| 21 | snssi | ⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) | |
| 22 | spanun | ⊢ ( ( { 𝐴 } ⊆ ℋ ∧ { 𝐵 } ⊆ ℋ ) → ( span ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ) | |
| 23 | 20 21 22 | syl2an | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( span ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 24 | 19 23 | eqtr2id | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( span ‘ { 𝐴 } ) +ℋ ( span ‘ { 𝐵 } ) ) = ( span ‘ { 𝐴 , 𝐵 } ) ) |
| 25 | 17 24 | sseqtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ⊆ ( span ‘ { 𝐴 , 𝐵 } ) ) |