This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A scalar product with a vector belongs to the span of its singleton. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansnmul | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnsh | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Sℋ ) | |
| 2 | spansnid | ⊢ ( 𝐴 ∈ ℋ → 𝐴 ∈ ( span ‘ { 𝐴 } ) ) | |
| 3 | 1 2 | jca | ⊢ ( 𝐴 ∈ ℋ → ( ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ 𝐴 ∈ ( span ‘ { 𝐴 } ) ) ) |
| 4 | shmulcl | ⊢ ( ( ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ( span ‘ { 𝐴 } ) ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) | |
| 5 | 4 | 3com12 | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ 𝐴 ∈ ( span ‘ { 𝐴 } ) ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) |
| 6 | 5 | 3expb | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ 𝐴 ∈ ( span ‘ { 𝐴 } ) ) ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) |
| 7 | 3 6 | sylan2 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) |