This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a subset of Hilbert space is a subspace. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spancl | ⊢ ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) ∈ Sℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spanval | ⊢ ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) = ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ) | |
| 2 | ssrab2 | ⊢ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ Sℋ | |
| 3 | helsh | ⊢ ℋ ∈ Sℋ | |
| 4 | sseq2 | ⊢ ( 𝑥 = ℋ → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ℋ ) ) | |
| 5 | 4 | rspcev | ⊢ ( ( ℋ ∈ Sℋ ∧ 𝐴 ⊆ ℋ ) → ∃ 𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ) |
| 6 | 3 5 | mpan | ⊢ ( 𝐴 ⊆ ℋ → ∃ 𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ) |
| 7 | rabn0 | ⊢ ( { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ≠ ∅ ↔ ∃ 𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ) | |
| 8 | 6 7 | sylibr | ⊢ ( 𝐴 ⊆ ℋ → { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ≠ ∅ ) |
| 9 | shintcl | ⊢ ( ( { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ Sℋ ∧ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ≠ ∅ ) → ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ∈ Sℋ ) | |
| 10 | 2 8 9 | sylancr | ⊢ ( 𝐴 ⊆ ℋ → ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ∈ Sℋ ) |
| 11 | 1 10 | eqeltrd | ⊢ ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) ∈ Sℋ ) |