This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in subspace sum. (Contributed by NM, 4-May-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shscl.1 | ⊢ 𝐴 ∈ Sℋ | |
| shscl.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | shseli | ⊢ ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shscl.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shscl.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | shsel | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) |