This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton is a filter. Example 1 of BourbakiTop1 p. I.36. (Contributed by FL, 16-Sep-2007) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snfil | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) → { 𝐴 } ∈ ( Fil ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) | |
| 2 | eqimss | ⊢ ( 𝑥 = 𝐴 → 𝑥 ⊆ 𝐴 ) | |
| 3 | 2 | pm4.71ri | ⊢ ( 𝑥 = 𝐴 ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = 𝐴 ) ) |
| 4 | 1 3 | bitri | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = 𝐴 ) ) |
| 5 | 4 | a1i | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) → ( 𝑥 ∈ { 𝐴 } ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = 𝐴 ) ) ) |
| 6 | simpl | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ 𝐴 = 𝐴 | |
| 8 | eqsbc1 | ⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐴 ↔ 𝐴 = 𝐴 ) ) | |
| 9 | 7 8 | mpbiri | ⊢ ( 𝐴 ∈ 𝐵 → [ 𝐴 / 𝑥 ] 𝑥 = 𝐴 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) → [ 𝐴 / 𝑥 ] 𝑥 = 𝐴 ) |
| 11 | simpr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) | |
| 12 | 11 | necomd | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) → ∅ ≠ 𝐴 ) |
| 13 | 12 | neneqd | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) → ¬ ∅ = 𝐴 ) |
| 14 | 0ex | ⊢ ∅ ∈ V | |
| 15 | eqsbc1 | ⊢ ( ∅ ∈ V → ( [ ∅ / 𝑥 ] 𝑥 = 𝐴 ↔ ∅ = 𝐴 ) ) | |
| 16 | 14 15 | ax-mp | ⊢ ( [ ∅ / 𝑥 ] 𝑥 = 𝐴 ↔ ∅ = 𝐴 ) |
| 17 | 13 16 | sylnibr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) → ¬ [ ∅ / 𝑥 ] 𝑥 = 𝐴 ) |
| 18 | sseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦 ) ) | |
| 19 | 18 | anbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝑦 ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑦 ) ) ) |
| 20 | eqss | ⊢ ( 𝑦 = 𝐴 ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑦 ) ) | |
| 21 | 20 | biimpri | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑦 ) → 𝑦 = 𝐴 ) |
| 22 | 19 21 | biimtrdi | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝑦 ) → 𝑦 = 𝐴 ) ) |
| 23 | 22 | com12 | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑥 = 𝐴 → 𝑦 = 𝐴 ) ) |
| 24 | 23 | 3adant1 | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝑦 ) → ( 𝑥 = 𝐴 → 𝑦 = 𝐴 ) ) |
| 25 | sbcid | ⊢ ( [ 𝑥 / 𝑥 ] 𝑥 = 𝐴 ↔ 𝑥 = 𝐴 ) | |
| 26 | eqsbc1 | ⊢ ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) | |
| 27 | 26 | elv | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) |
| 28 | 24 25 27 | 3imtr4g | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝑦 ) → ( [ 𝑥 / 𝑥 ] 𝑥 = 𝐴 → [ 𝑦 / 𝑥 ] 𝑥 = 𝐴 ) ) |
| 29 | ineq12 | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑥 = 𝐴 ) → ( 𝑦 ∩ 𝑥 ) = ( 𝐴 ∩ 𝐴 ) ) | |
| 30 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 31 | 29 30 | eqtrdi | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑥 = 𝐴 ) → ( 𝑦 ∩ 𝑥 ) = 𝐴 ) |
| 32 | 27 25 31 | syl2anb | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝑥 = 𝐴 ∧ [ 𝑥 / 𝑥 ] 𝑥 = 𝐴 ) → ( 𝑦 ∩ 𝑥 ) = 𝐴 ) |
| 33 | vex | ⊢ 𝑦 ∈ V | |
| 34 | 33 | inex1 | ⊢ ( 𝑦 ∩ 𝑥 ) ∈ V |
| 35 | eqsbc1 | ⊢ ( ( 𝑦 ∩ 𝑥 ) ∈ V → ( [ ( 𝑦 ∩ 𝑥 ) / 𝑥 ] 𝑥 = 𝐴 ↔ ( 𝑦 ∩ 𝑥 ) = 𝐴 ) ) | |
| 36 | 34 35 | ax-mp | ⊢ ( [ ( 𝑦 ∩ 𝑥 ) / 𝑥 ] 𝑥 = 𝐴 ↔ ( 𝑦 ∩ 𝑥 ) = 𝐴 ) |
| 37 | 32 36 | sylibr | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝑥 = 𝐴 ∧ [ 𝑥 / 𝑥 ] 𝑥 = 𝐴 ) → [ ( 𝑦 ∩ 𝑥 ) / 𝑥 ] 𝑥 = 𝐴 ) |
| 38 | 37 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → ( ( [ 𝑦 / 𝑥 ] 𝑥 = 𝐴 ∧ [ 𝑥 / 𝑥 ] 𝑥 = 𝐴 ) → [ ( 𝑦 ∩ 𝑥 ) / 𝑥 ] 𝑥 = 𝐴 ) ) |
| 39 | 5 6 10 17 28 38 | isfild | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅ ) → { 𝐴 } ∈ ( Fil ‘ 𝐴 ) ) |