This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton is a filter. Example 1 of BourbakiTop1 p. I.36. (Contributed by FL, 16-Sep-2007) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snfil | |- ( ( A e. B /\ A =/= (/) ) -> { A } e. ( Fil ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn | |- ( x e. { A } <-> x = A ) |
|
| 2 | eqimss | |- ( x = A -> x C_ A ) |
|
| 3 | 2 | pm4.71ri | |- ( x = A <-> ( x C_ A /\ x = A ) ) |
| 4 | 1 3 | bitri | |- ( x e. { A } <-> ( x C_ A /\ x = A ) ) |
| 5 | 4 | a1i | |- ( ( A e. B /\ A =/= (/) ) -> ( x e. { A } <-> ( x C_ A /\ x = A ) ) ) |
| 6 | simpl | |- ( ( A e. B /\ A =/= (/) ) -> A e. B ) |
|
| 7 | eqid | |- A = A |
|
| 8 | eqsbc1 | |- ( A e. B -> ( [. A / x ]. x = A <-> A = A ) ) |
|
| 9 | 7 8 | mpbiri | |- ( A e. B -> [. A / x ]. x = A ) |
| 10 | 9 | adantr | |- ( ( A e. B /\ A =/= (/) ) -> [. A / x ]. x = A ) |
| 11 | simpr | |- ( ( A e. B /\ A =/= (/) ) -> A =/= (/) ) |
|
| 12 | 11 | necomd | |- ( ( A e. B /\ A =/= (/) ) -> (/) =/= A ) |
| 13 | 12 | neneqd | |- ( ( A e. B /\ A =/= (/) ) -> -. (/) = A ) |
| 14 | 0ex | |- (/) e. _V |
|
| 15 | eqsbc1 | |- ( (/) e. _V -> ( [. (/) / x ]. x = A <-> (/) = A ) ) |
|
| 16 | 14 15 | ax-mp | |- ( [. (/) / x ]. x = A <-> (/) = A ) |
| 17 | 13 16 | sylnibr | |- ( ( A e. B /\ A =/= (/) ) -> -. [. (/) / x ]. x = A ) |
| 18 | sseq1 | |- ( x = A -> ( x C_ y <-> A C_ y ) ) |
|
| 19 | 18 | anbi2d | |- ( x = A -> ( ( y C_ A /\ x C_ y ) <-> ( y C_ A /\ A C_ y ) ) ) |
| 20 | eqss | |- ( y = A <-> ( y C_ A /\ A C_ y ) ) |
|
| 21 | 20 | biimpri | |- ( ( y C_ A /\ A C_ y ) -> y = A ) |
| 22 | 19 21 | biimtrdi | |- ( x = A -> ( ( y C_ A /\ x C_ y ) -> y = A ) ) |
| 23 | 22 | com12 | |- ( ( y C_ A /\ x C_ y ) -> ( x = A -> y = A ) ) |
| 24 | 23 | 3adant1 | |- ( ( ( A e. B /\ A =/= (/) ) /\ y C_ A /\ x C_ y ) -> ( x = A -> y = A ) ) |
| 25 | sbcid | |- ( [. x / x ]. x = A <-> x = A ) |
|
| 26 | eqsbc1 | |- ( y e. _V -> ( [. y / x ]. x = A <-> y = A ) ) |
|
| 27 | 26 | elv | |- ( [. y / x ]. x = A <-> y = A ) |
| 28 | 24 25 27 | 3imtr4g | |- ( ( ( A e. B /\ A =/= (/) ) /\ y C_ A /\ x C_ y ) -> ( [. x / x ]. x = A -> [. y / x ]. x = A ) ) |
| 29 | ineq12 | |- ( ( y = A /\ x = A ) -> ( y i^i x ) = ( A i^i A ) ) |
|
| 30 | inidm | |- ( A i^i A ) = A |
|
| 31 | 29 30 | eqtrdi | |- ( ( y = A /\ x = A ) -> ( y i^i x ) = A ) |
| 32 | 27 25 31 | syl2anb | |- ( ( [. y / x ]. x = A /\ [. x / x ]. x = A ) -> ( y i^i x ) = A ) |
| 33 | vex | |- y e. _V |
|
| 34 | 33 | inex1 | |- ( y i^i x ) e. _V |
| 35 | eqsbc1 | |- ( ( y i^i x ) e. _V -> ( [. ( y i^i x ) / x ]. x = A <-> ( y i^i x ) = A ) ) |
|
| 36 | 34 35 | ax-mp | |- ( [. ( y i^i x ) / x ]. x = A <-> ( y i^i x ) = A ) |
| 37 | 32 36 | sylibr | |- ( ( [. y / x ]. x = A /\ [. x / x ]. x = A ) -> [. ( y i^i x ) / x ]. x = A ) |
| 38 | 37 | a1i | |- ( ( ( A e. B /\ A =/= (/) ) /\ y C_ A /\ x C_ A ) -> ( ( [. y / x ]. x = A /\ [. x / x ]. x = A ) -> [. ( y i^i x ) / x ]. x = A ) ) |
| 39 | 5 6 10 17 28 38 | isfild | |- ( ( A e. B /\ A =/= (/) ) -> { A } e. ( Fil ` A ) ) |