This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sbcid

Description: An identity theorem for substitution. See sbid . (Contributed by Mario Carneiro, 18-Feb-2017)

Ref Expression
Assertion sbcid ( [ 𝑥 / 𝑥 ] 𝜑𝜑 )

Proof

Step Hyp Ref Expression
1 sbsbc ( [ 𝑥 / 𝑥 ] 𝜑[ 𝑥 / 𝑥 ] 𝜑 )
2 sbid ( [ 𝑥 / 𝑥 ] 𝜑𝜑 )
3 1 2 bitr3i ( [ 𝑥 / 𝑥 ] 𝜑𝜑 )