This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity of the monoid M of endofunctions on set NN0 is not contained in the base set of the constructed monoid S . (Contributed by AV, 17-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | ||
| smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | ||
| smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | ||
| Assertion | smndex1n0mnd | ⊢ ( 0g ‘ 𝑀 ) ∉ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | |
| 5 | smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | |
| 6 | smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | |
| 7 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 8 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( I ↾ ℕ0 ) ‘ 𝑁 ) ) | |
| 9 | 2 7 | ax-mp | ⊢ 𝑁 ∈ ℕ0 |
| 10 | fvresi | ⊢ ( 𝑁 ∈ ℕ0 → ( ( I ↾ ℕ0 ) ‘ 𝑁 ) = 𝑁 ) | |
| 11 | 9 10 | ax-mp | ⊢ ( ( I ↾ ℕ0 ) ‘ 𝑁 ) = 𝑁 |
| 12 | 8 11 | eqtrdi | ⊢ ( 𝑥 = 𝑁 → ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = 𝑁 ) |
| 13 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑁 ) ) | |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ↔ 𝑁 = ( 𝐼 ‘ 𝑁 ) ) ) |
| 15 | 14 | notbid | ⊢ ( 𝑥 = 𝑁 → ( ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ↔ ¬ 𝑁 = ( 𝐼 ‘ 𝑁 ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 = 𝑁 ) → ( ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ↔ ¬ 𝑁 = ( 𝐼 ‘ 𝑁 ) ) ) |
| 17 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 18 | 17 | neneqd | ⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 ) |
| 19 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 mod 𝑁 ) = ( 𝑁 mod 𝑁 ) ) | |
| 20 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 21 | modid0 | ⊢ ( 𝑁 ∈ ℝ+ → ( 𝑁 mod 𝑁 ) = 0 ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 mod 𝑁 ) = 0 ) |
| 23 | 19 22 | sylan9eqr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 = 𝑁 ) → ( 𝑥 mod 𝑁 ) = 0 ) |
| 24 | c0ex | ⊢ 0 ∈ V | |
| 25 | 24 | a1i | ⊢ ( 𝑁 ∈ ℕ → 0 ∈ V ) |
| 26 | 3 23 7 25 | fvmptd2 | ⊢ ( 𝑁 ∈ ℕ → ( 𝐼 ‘ 𝑁 ) = 0 ) |
| 27 | 26 | eqeq2d | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 = ( 𝐼 ‘ 𝑁 ) ↔ 𝑁 = 0 ) ) |
| 28 | 18 27 | mtbird | ⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = ( 𝐼 ‘ 𝑁 ) ) |
| 29 | 7 16 28 | rspcedvd | ⊢ ( 𝑁 ∈ ℕ → ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
| 30 | 2 29 | ax-mp | ⊢ ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) |
| 31 | rexnal | ⊢ ( ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) | |
| 32 | 30 31 | mpbi | ⊢ ¬ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) |
| 33 | fnresi | ⊢ ( I ↾ ℕ0 ) Fn ℕ0 | |
| 34 | ovex | ⊢ ( 𝑥 mod 𝑁 ) ∈ V | |
| 35 | 34 3 | fnmpti | ⊢ 𝐼 Fn ℕ0 |
| 36 | eqfnfv | ⊢ ( ( ( I ↾ ℕ0 ) Fn ℕ0 ∧ 𝐼 Fn ℕ0 ) → ( ( I ↾ ℕ0 ) = 𝐼 ↔ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) ) | |
| 37 | 33 35 36 | mp2an | ⊢ ( ( I ↾ ℕ0 ) = 𝐼 ↔ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
| 38 | 32 37 | mtbir | ⊢ ¬ ( I ↾ ℕ0 ) = 𝐼 |
| 39 | 9 | a1i | ⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℕ0 ) |
| 40 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) ) | |
| 41 | 12 40 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ↔ 𝑁 = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) ) ) |
| 42 | 41 | notbid | ⊢ ( 𝑥 = 𝑁 → ( ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ¬ 𝑁 = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) ) ) |
| 43 | 42 | adantl | ⊢ ( ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 = 𝑁 ) → ( ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ¬ 𝑁 = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) ) ) |
| 44 | fzonel | ⊢ ¬ 𝑁 ∈ ( 0 ..^ 𝑁 ) | |
| 45 | eleq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ( 0 ..^ 𝑁 ) ) ) | |
| 46 | 45 | eqcoms | ⊢ ( 𝑁 = 𝑛 → ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 47 | 44 46 | mtbiri | ⊢ ( 𝑁 = 𝑛 → ¬ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) |
| 48 | 47 | con2i | ⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ¬ 𝑁 = 𝑛 ) |
| 49 | nn0ex | ⊢ ℕ0 ∈ V | |
| 50 | 49 | mptex | ⊢ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ∈ V |
| 51 | 4 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ∈ V ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
| 52 | 50 51 | mpan2 | ⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
| 53 | eqidd | ⊢ ( ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 = 𝑁 ) → 𝑛 = 𝑛 ) | |
| 54 | id | ⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 ∈ ( 0 ..^ 𝑁 ) ) | |
| 55 | 52 53 39 54 | fvmptd | ⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) = 𝑛 ) |
| 56 | 55 | eqeq2d | ⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( 𝑁 = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) ↔ 𝑁 = 𝑛 ) ) |
| 57 | 48 56 | mtbird | ⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ¬ 𝑁 = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) ) |
| 58 | 39 43 57 | rspcedvd | ⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 59 | rexnal | ⊢ ( ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 60 | 58 59 | sylib | ⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ¬ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 61 | vex | ⊢ 𝑛 ∈ V | |
| 62 | eqid | ⊢ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) | |
| 63 | 61 62 | fnmpti | ⊢ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) Fn ℕ0 |
| 64 | 52 | fneq1d | ⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝐺 ‘ 𝑛 ) Fn ℕ0 ↔ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) Fn ℕ0 ) ) |
| 65 | 63 64 | mpbiri | ⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝑛 ) Fn ℕ0 ) |
| 66 | eqfnfv | ⊢ ( ( ( I ↾ ℕ0 ) Fn ℕ0 ∧ ( 𝐺 ‘ 𝑛 ) Fn ℕ0 ) → ( ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ↔ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | |
| 67 | 33 65 66 | sylancr | ⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ↔ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 68 | 60 67 | mtbird | ⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ¬ ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 69 | 68 | nrex | ⊢ ¬ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) |
| 70 | 38 69 | pm3.2ni | ⊢ ¬ ( ( I ↾ ℕ0 ) = 𝐼 ∨ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 71 | 1 | efmndid | ⊢ ( ℕ0 ∈ V → ( I ↾ ℕ0 ) = ( 0g ‘ 𝑀 ) ) |
| 72 | 49 71 | ax-mp | ⊢ ( I ↾ ℕ0 ) = ( 0g ‘ 𝑀 ) |
| 73 | 72 | eqcomi | ⊢ ( 0g ‘ 𝑀 ) = ( I ↾ ℕ0 ) |
| 74 | 73 5 | eleq12i | ⊢ ( ( 0g ‘ 𝑀 ) ∈ 𝐵 ↔ ( I ↾ ℕ0 ) ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) |
| 75 | elun | ⊢ ( ( I ↾ ℕ0 ) ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ↔ ( ( I ↾ ℕ0 ) ∈ { 𝐼 } ∨ ( I ↾ ℕ0 ) ∈ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) | |
| 76 | resiexg | ⊢ ( ℕ0 ∈ V → ( I ↾ ℕ0 ) ∈ V ) | |
| 77 | 49 76 | ax-mp | ⊢ ( I ↾ ℕ0 ) ∈ V |
| 78 | 77 | elsn | ⊢ ( ( I ↾ ℕ0 ) ∈ { 𝐼 } ↔ ( I ↾ ℕ0 ) = 𝐼 ) |
| 79 | eliun | ⊢ ( ( I ↾ ℕ0 ) ∈ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ↔ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) ∈ { ( 𝐺 ‘ 𝑛 ) } ) | |
| 80 | 77 | elsn | ⊢ ( ( I ↾ ℕ0 ) ∈ { ( 𝐺 ‘ 𝑛 ) } ↔ ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 81 | 80 | rexbii | ⊢ ( ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) ∈ { ( 𝐺 ‘ 𝑛 ) } ↔ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 82 | 79 81 | bitri | ⊢ ( ( I ↾ ℕ0 ) ∈ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ↔ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 83 | 78 82 | orbi12i | ⊢ ( ( ( I ↾ ℕ0 ) ∈ { 𝐼 } ∨ ( I ↾ ℕ0 ) ∈ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ↔ ( ( I ↾ ℕ0 ) = 𝐼 ∨ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) ) |
| 84 | 75 83 | bitri | ⊢ ( ( I ↾ ℕ0 ) ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ↔ ( ( I ↾ ℕ0 ) = 𝐼 ∨ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) ) |
| 85 | 74 84 | bitri | ⊢ ( ( 0g ‘ 𝑀 ) ∈ 𝐵 ↔ ( ( I ↾ ℕ0 ) = 𝐼 ∨ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) ) |
| 86 | 70 85 | mtbir | ⊢ ¬ ( 0g ‘ 𝑀 ) ∈ 𝐵 |
| 87 | 86 | nelir | ⊢ ( 0g ‘ 𝑀 ) ∉ 𝐵 |