This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity of the monoid M of endofunctions on set NN0 is not contained in the base set of the constructed monoid S . (Contributed by AV, 17-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex1ibas.n | |- N e. NN |
||
| smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
||
| smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
||
| smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
||
| smndex1mgm.s | |- S = ( M |`s B ) |
||
| Assertion | smndex1n0mnd | |- ( 0g ` M ) e/ B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex1ibas.n | |- N e. NN |
|
| 3 | smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
|
| 4 | smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
|
| 5 | smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
|
| 6 | smndex1mgm.s | |- S = ( M |`s B ) |
|
| 7 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 8 | fveq2 | |- ( x = N -> ( ( _I |` NN0 ) ` x ) = ( ( _I |` NN0 ) ` N ) ) |
|
| 9 | 2 7 | ax-mp | |- N e. NN0 |
| 10 | fvresi | |- ( N e. NN0 -> ( ( _I |` NN0 ) ` N ) = N ) |
|
| 11 | 9 10 | ax-mp | |- ( ( _I |` NN0 ) ` N ) = N |
| 12 | 8 11 | eqtrdi | |- ( x = N -> ( ( _I |` NN0 ) ` x ) = N ) |
| 13 | fveq2 | |- ( x = N -> ( I ` x ) = ( I ` N ) ) |
|
| 14 | 12 13 | eqeq12d | |- ( x = N -> ( ( ( _I |` NN0 ) ` x ) = ( I ` x ) <-> N = ( I ` N ) ) ) |
| 15 | 14 | notbid | |- ( x = N -> ( -. ( ( _I |` NN0 ) ` x ) = ( I ` x ) <-> -. N = ( I ` N ) ) ) |
| 16 | 15 | adantl | |- ( ( N e. NN /\ x = N ) -> ( -. ( ( _I |` NN0 ) ` x ) = ( I ` x ) <-> -. N = ( I ` N ) ) ) |
| 17 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 18 | 17 | neneqd | |- ( N e. NN -> -. N = 0 ) |
| 19 | oveq1 | |- ( x = N -> ( x mod N ) = ( N mod N ) ) |
|
| 20 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 21 | modid0 | |- ( N e. RR+ -> ( N mod N ) = 0 ) |
|
| 22 | 20 21 | syl | |- ( N e. NN -> ( N mod N ) = 0 ) |
| 23 | 19 22 | sylan9eqr | |- ( ( N e. NN /\ x = N ) -> ( x mod N ) = 0 ) |
| 24 | c0ex | |- 0 e. _V |
|
| 25 | 24 | a1i | |- ( N e. NN -> 0 e. _V ) |
| 26 | 3 23 7 25 | fvmptd2 | |- ( N e. NN -> ( I ` N ) = 0 ) |
| 27 | 26 | eqeq2d | |- ( N e. NN -> ( N = ( I ` N ) <-> N = 0 ) ) |
| 28 | 18 27 | mtbird | |- ( N e. NN -> -. N = ( I ` N ) ) |
| 29 | 7 16 28 | rspcedvd | |- ( N e. NN -> E. x e. NN0 -. ( ( _I |` NN0 ) ` x ) = ( I ` x ) ) |
| 30 | 2 29 | ax-mp | |- E. x e. NN0 -. ( ( _I |` NN0 ) ` x ) = ( I ` x ) |
| 31 | rexnal | |- ( E. x e. NN0 -. ( ( _I |` NN0 ) ` x ) = ( I ` x ) <-> -. A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( I ` x ) ) |
|
| 32 | 30 31 | mpbi | |- -. A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( I ` x ) |
| 33 | fnresi | |- ( _I |` NN0 ) Fn NN0 |
|
| 34 | ovex | |- ( x mod N ) e. _V |
|
| 35 | 34 3 | fnmpti | |- I Fn NN0 |
| 36 | eqfnfv | |- ( ( ( _I |` NN0 ) Fn NN0 /\ I Fn NN0 ) -> ( ( _I |` NN0 ) = I <-> A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( I ` x ) ) ) |
|
| 37 | 33 35 36 | mp2an | |- ( ( _I |` NN0 ) = I <-> A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( I ` x ) ) |
| 38 | 32 37 | mtbir | |- -. ( _I |` NN0 ) = I |
| 39 | 9 | a1i | |- ( n e. ( 0 ..^ N ) -> N e. NN0 ) |
| 40 | fveq2 | |- ( x = N -> ( ( G ` n ) ` x ) = ( ( G ` n ) ` N ) ) |
|
| 41 | 12 40 | eqeq12d | |- ( x = N -> ( ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) <-> N = ( ( G ` n ) ` N ) ) ) |
| 42 | 41 | notbid | |- ( x = N -> ( -. ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) <-> -. N = ( ( G ` n ) ` N ) ) ) |
| 43 | 42 | adantl | |- ( ( n e. ( 0 ..^ N ) /\ x = N ) -> ( -. ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) <-> -. N = ( ( G ` n ) ` N ) ) ) |
| 44 | fzonel | |- -. N e. ( 0 ..^ N ) |
|
| 45 | eleq1 | |- ( n = N -> ( n e. ( 0 ..^ N ) <-> N e. ( 0 ..^ N ) ) ) |
|
| 46 | 45 | eqcoms | |- ( N = n -> ( n e. ( 0 ..^ N ) <-> N e. ( 0 ..^ N ) ) ) |
| 47 | 44 46 | mtbiri | |- ( N = n -> -. n e. ( 0 ..^ N ) ) |
| 48 | 47 | con2i | |- ( n e. ( 0 ..^ N ) -> -. N = n ) |
| 49 | nn0ex | |- NN0 e. _V |
|
| 50 | 49 | mptex | |- ( x e. NN0 |-> n ) e. _V |
| 51 | 4 | fvmpt2 | |- ( ( n e. ( 0 ..^ N ) /\ ( x e. NN0 |-> n ) e. _V ) -> ( G ` n ) = ( x e. NN0 |-> n ) ) |
| 52 | 50 51 | mpan2 | |- ( n e. ( 0 ..^ N ) -> ( G ` n ) = ( x e. NN0 |-> n ) ) |
| 53 | eqidd | |- ( ( n e. ( 0 ..^ N ) /\ x = N ) -> n = n ) |
|
| 54 | id | |- ( n e. ( 0 ..^ N ) -> n e. ( 0 ..^ N ) ) |
|
| 55 | 52 53 39 54 | fvmptd | |- ( n e. ( 0 ..^ N ) -> ( ( G ` n ) ` N ) = n ) |
| 56 | 55 | eqeq2d | |- ( n e. ( 0 ..^ N ) -> ( N = ( ( G ` n ) ` N ) <-> N = n ) ) |
| 57 | 48 56 | mtbird | |- ( n e. ( 0 ..^ N ) -> -. N = ( ( G ` n ) ` N ) ) |
| 58 | 39 43 57 | rspcedvd | |- ( n e. ( 0 ..^ N ) -> E. x e. NN0 -. ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) ) |
| 59 | rexnal | |- ( E. x e. NN0 -. ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) <-> -. A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) ) |
|
| 60 | 58 59 | sylib | |- ( n e. ( 0 ..^ N ) -> -. A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) ) |
| 61 | vex | |- n e. _V |
|
| 62 | eqid | |- ( x e. NN0 |-> n ) = ( x e. NN0 |-> n ) |
|
| 63 | 61 62 | fnmpti | |- ( x e. NN0 |-> n ) Fn NN0 |
| 64 | 52 | fneq1d | |- ( n e. ( 0 ..^ N ) -> ( ( G ` n ) Fn NN0 <-> ( x e. NN0 |-> n ) Fn NN0 ) ) |
| 65 | 63 64 | mpbiri | |- ( n e. ( 0 ..^ N ) -> ( G ` n ) Fn NN0 ) |
| 66 | eqfnfv | |- ( ( ( _I |` NN0 ) Fn NN0 /\ ( G ` n ) Fn NN0 ) -> ( ( _I |` NN0 ) = ( G ` n ) <-> A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) ) ) |
|
| 67 | 33 65 66 | sylancr | |- ( n e. ( 0 ..^ N ) -> ( ( _I |` NN0 ) = ( G ` n ) <-> A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) ) ) |
| 68 | 60 67 | mtbird | |- ( n e. ( 0 ..^ N ) -> -. ( _I |` NN0 ) = ( G ` n ) ) |
| 69 | 68 | nrex | |- -. E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) |
| 70 | 38 69 | pm3.2ni | |- -. ( ( _I |` NN0 ) = I \/ E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) ) |
| 71 | 1 | efmndid | |- ( NN0 e. _V -> ( _I |` NN0 ) = ( 0g ` M ) ) |
| 72 | 49 71 | ax-mp | |- ( _I |` NN0 ) = ( 0g ` M ) |
| 73 | 72 | eqcomi | |- ( 0g ` M ) = ( _I |` NN0 ) |
| 74 | 73 5 | eleq12i | |- ( ( 0g ` M ) e. B <-> ( _I |` NN0 ) e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) ) |
| 75 | elun | |- ( ( _I |` NN0 ) e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) <-> ( ( _I |` NN0 ) e. { I } \/ ( _I |` NN0 ) e. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) ) |
|
| 76 | resiexg | |- ( NN0 e. _V -> ( _I |` NN0 ) e. _V ) |
|
| 77 | 49 76 | ax-mp | |- ( _I |` NN0 ) e. _V |
| 78 | 77 | elsn | |- ( ( _I |` NN0 ) e. { I } <-> ( _I |` NN0 ) = I ) |
| 79 | eliun | |- ( ( _I |` NN0 ) e. U_ n e. ( 0 ..^ N ) { ( G ` n ) } <-> E. n e. ( 0 ..^ N ) ( _I |` NN0 ) e. { ( G ` n ) } ) |
|
| 80 | 77 | elsn | |- ( ( _I |` NN0 ) e. { ( G ` n ) } <-> ( _I |` NN0 ) = ( G ` n ) ) |
| 81 | 80 | rexbii | |- ( E. n e. ( 0 ..^ N ) ( _I |` NN0 ) e. { ( G ` n ) } <-> E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) ) |
| 82 | 79 81 | bitri | |- ( ( _I |` NN0 ) e. U_ n e. ( 0 ..^ N ) { ( G ` n ) } <-> E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) ) |
| 83 | 78 82 | orbi12i | |- ( ( ( _I |` NN0 ) e. { I } \/ ( _I |` NN0 ) e. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) <-> ( ( _I |` NN0 ) = I \/ E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) ) ) |
| 84 | 75 83 | bitri | |- ( ( _I |` NN0 ) e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) <-> ( ( _I |` NN0 ) = I \/ E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) ) ) |
| 85 | 74 84 | bitri | |- ( ( 0g ` M ) e. B <-> ( ( _I |` NN0 ) = I \/ E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) ) ) |
| 86 | 70 85 | mtbir | |- -. ( 0g ` M ) e. B |
| 87 | 86 | nelir | |- ( 0g ` M ) e/ B |