This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set B of the constructed monoid S is not a submonoid of the monoid M of endofunctions on set NN0 , although M e. Mnd and S e. Mnd and B C_ ( BaseM ) hold. (Contributed by AV, 17-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | ||
| smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | ||
| smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | ||
| Assertion | nsmndex1 | ⊢ 𝐵 ∉ ( SubMnd ‘ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | |
| 5 | smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | |
| 6 | smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | |
| 7 | 1 2 3 4 5 6 | smndex1n0mnd | ⊢ ( 0g ‘ 𝑀 ) ∉ 𝐵 |
| 8 | 7 | neli | ⊢ ¬ ( 0g ‘ 𝑀 ) ∈ 𝐵 |
| 9 | 8 | intnan | ⊢ ¬ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 10 | 9 | intnan | ⊢ ¬ ( ( 𝑀 ∈ Mnd ∧ ( 𝑀 ↾s 𝐵 ) ∈ Mnd ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 12 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 13 | 11 12 | issubmndb | ⊢ ( 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ( 𝑀 ∈ Mnd ∧ ( 𝑀 ↾s 𝐵 ) ∈ Mnd ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ) ) ) |
| 14 | 10 13 | mtbir | ⊢ ¬ 𝐵 ∈ ( SubMnd ‘ 𝑀 ) |
| 15 | 14 | nelir | ⊢ 𝐵 ∉ ( SubMnd ‘ 𝑀 ) |