This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function restricted to a set A is the identity element of the monoid of endofunctions on A . (Contributed by AV, 25-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ielefmnd.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| Assertion | efmndid | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ielefmnd.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 5 | 1 | ielefmnd | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) |
| 6 | 1 2 4 | efmndov | ⊢ ( ( ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = ( ( I ↾ 𝐴 ) ∘ 𝑓 ) ) |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = ( ( I ↾ 𝐴 ) ∘ 𝑓 ) ) |
| 8 | 1 2 | efmndbasf | ⊢ ( 𝑓 ∈ ( Base ‘ 𝐺 ) → 𝑓 : 𝐴 ⟶ 𝐴 ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝑓 : 𝐴 ⟶ 𝐴 ) |
| 10 | fcoi2 | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ) |
| 12 | 7 11 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ) |
| 13 | 5 | anim1ci | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 14 | 1 2 4 | efmndov | ⊢ ( ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = ( 𝑓 ∘ ( I ↾ 𝐴 ) ) ) |
| 15 | 13 14 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = ( 𝑓 ∘ ( I ↾ 𝐴 ) ) ) |
| 16 | fcoi1 | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐴 → ( 𝑓 ∘ ( I ↾ 𝐴 ) ) = 𝑓 ) | |
| 17 | 9 16 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ∘ ( I ↾ 𝐴 ) ) = 𝑓 ) |
| 18 | 15 17 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) |
| 19 | 2 3 4 5 12 18 | ismgmid2 | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) = ( 0g ‘ 𝐺 ) ) |