This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eleq1i.1 | ⊢ 𝐴 = 𝐵 | |
| eleq12i.2 | ⊢ 𝐶 = 𝐷 | ||
| Assertion | eleq12i | ⊢ ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1i.1 | ⊢ 𝐴 = 𝐵 | |
| 2 | eleq12i.2 | ⊢ 𝐶 = 𝐷 | |
| 3 | 2 | eleq2i | ⊢ ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷 ) |
| 4 | 1 | eleq1i | ⊢ ( 𝐴 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷 ) |
| 5 | 3 4 | bitri | ⊢ ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷 ) |