This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) is a monoid. (Contributed by AV, 16-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | ||
| smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | ||
| smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | ||
| Assertion | smndex1mnd | ⊢ 𝑆 ∈ Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | |
| 5 | smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | |
| 6 | smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | |
| 7 | 1 2 3 4 5 6 | smndex1sgrp | ⊢ 𝑆 ∈ Smgrp |
| 8 | nn0ex | ⊢ ℕ0 ∈ V | |
| 9 | 8 | mptex | ⊢ ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) ∈ V |
| 10 | 3 9 | eqeltri | ⊢ 𝐼 ∈ V |
| 11 | 10 | snid | ⊢ 𝐼 ∈ { 𝐼 } |
| 12 | elun1 | ⊢ ( 𝐼 ∈ { 𝐼 } → 𝐼 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) | |
| 13 | 11 12 | ax-mp | ⊢ 𝐼 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) |
| 14 | 13 5 | eleqtrri | ⊢ 𝐼 ∈ 𝐵 |
| 15 | id | ⊢ ( 𝐼 ∈ 𝐵 → 𝐼 ∈ 𝐵 ) | |
| 16 | coeq1 | ⊢ ( 𝑎 = 𝐼 → ( 𝑎 ∘ 𝑏 ) = ( 𝐼 ∘ 𝑏 ) ) | |
| 17 | 16 | eqeq1d | ⊢ ( 𝑎 = 𝐼 → ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ↔ ( 𝐼 ∘ 𝑏 ) = 𝑏 ) ) |
| 18 | coeq2 | ⊢ ( 𝑎 = 𝐼 → ( 𝑏 ∘ 𝑎 ) = ( 𝑏 ∘ 𝐼 ) ) | |
| 19 | 18 | eqeq1d | ⊢ ( 𝑎 = 𝐼 → ( ( 𝑏 ∘ 𝑎 ) = 𝑏 ↔ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) ) |
| 20 | 17 19 | anbi12d | ⊢ ( 𝑎 = 𝐼 → ( ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ↔ ( ( 𝐼 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) ) ) |
| 21 | 20 | ralbidv | ⊢ ( 𝑎 = 𝐼 → ( ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ↔ ∀ 𝑏 ∈ 𝐵 ( ( 𝐼 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 = 𝐼 ) → ( ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ↔ ∀ 𝑏 ∈ 𝐵 ( ( 𝐼 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) ) ) |
| 23 | 1 2 3 4 5 6 | smndex1mndlem | ⊢ ( 𝑏 ∈ 𝐵 → ( ( 𝐼 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) ) |
| 24 | 23 | rgen | ⊢ ∀ 𝑏 ∈ 𝐵 ( ( 𝐼 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) |
| 25 | 24 | a1i | ⊢ ( 𝐼 ∈ 𝐵 → ∀ 𝑏 ∈ 𝐵 ( ( 𝐼 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) ) |
| 26 | 15 22 25 | rspcedvd | ⊢ ( 𝐼 ∈ 𝐵 → ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ) |
| 27 | 14 26 | ax-mp | ⊢ ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) |
| 28 | 1 2 3 4 5 | smndex1basss | ⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |
| 29 | ssel | ⊢ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) → ( 𝑎 ∈ 𝐵 → 𝑎 ∈ ( Base ‘ 𝑀 ) ) ) | |
| 30 | ssel | ⊢ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) → ( 𝑏 ∈ 𝐵 → 𝑏 ∈ ( Base ‘ 𝑀 ) ) ) | |
| 31 | 29 30 | anim12d | ⊢ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) → ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) ) ) |
| 32 | 28 31 | ax-mp | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) ) |
| 33 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 34 | snex | ⊢ { 𝐼 } ∈ V | |
| 35 | ovex | ⊢ ( 0 ..^ 𝑁 ) ∈ V | |
| 36 | snex | ⊢ { ( 𝐺 ‘ 𝑛 ) } ∈ V | |
| 37 | 35 36 | iunex | ⊢ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ∈ V |
| 38 | 34 37 | unex | ⊢ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ∈ V |
| 39 | 5 38 | eqeltri | ⊢ 𝐵 ∈ V |
| 40 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 41 | 6 40 | ressplusg | ⊢ ( 𝐵 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) ) |
| 42 | 39 41 | ax-mp | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) |
| 43 | 42 | eqcomi | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑀 ) |
| 44 | 1 33 43 | efmndov | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = ( 𝑎 ∘ 𝑏 ) ) |
| 45 | 44 | eqeq1d | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ↔ ( 𝑎 ∘ 𝑏 ) = 𝑏 ) ) |
| 46 | 43 | oveqi | ⊢ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = ( 𝑏 ( +g ‘ 𝑀 ) 𝑎 ) |
| 47 | 1 33 40 | efmndov | ⊢ ( ( 𝑏 ∈ ( Base ‘ 𝑀 ) ∧ 𝑎 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑏 ( +g ‘ 𝑀 ) 𝑎 ) = ( 𝑏 ∘ 𝑎 ) ) |
| 48 | 47 | ancoms | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑏 ( +g ‘ 𝑀 ) 𝑎 ) = ( 𝑏 ∘ 𝑎 ) ) |
| 49 | 46 48 | eqtrid | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = ( 𝑏 ∘ 𝑎 ) ) |
| 50 | 49 | eqeq1d | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ↔ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ) |
| 51 | 45 50 | anbi12d | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ) ↔ ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ) ) |
| 52 | 32 51 | syl | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ) ↔ ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ) ) |
| 53 | 52 | ralbidva | ⊢ ( 𝑎 ∈ 𝐵 → ( ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ) ↔ ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ) ) |
| 54 | 53 | rexbiia | ⊢ ( ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ) |
| 55 | 27 54 | mpbir | ⊢ ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ) |
| 56 | 1 2 3 4 5 6 | smndex1bas | ⊢ ( Base ‘ 𝑆 ) = 𝐵 |
| 57 | 56 | eqcomi | ⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 58 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 59 | 57 58 | ismnddef | ⊢ ( 𝑆 ∈ Mnd ↔ ( 𝑆 ∈ Smgrp ∧ ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ) ) ) |
| 60 | 7 55 59 | mpbir2an | ⊢ 𝑆 ∈ Mnd |