This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009) (Revised by AV, 1-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismnddef.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ismnddef.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | ismnddef | ⊢ ( 𝐺 ∈ Mnd ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismnddef.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ismnddef.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | fvex | ⊢ ( Base ‘ 𝑔 ) ∈ V | |
| 4 | fvex | ⊢ ( +g ‘ 𝑔 ) ∈ V | |
| 5 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
| 7 | 6 | eqeq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝑏 = ( Base ‘ 𝑔 ) ↔ 𝑏 = 𝐵 ) ) |
| 8 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) | |
| 9 | 8 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = + ) |
| 10 | 9 | eqeq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝑝 = ( +g ‘ 𝑔 ) ↔ 𝑝 = + ) ) |
| 11 | 7 10 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑏 = ( Base ‘ 𝑔 ) ∧ 𝑝 = ( +g ‘ 𝑔 ) ) ↔ ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ) ) |
| 12 | simpl | ⊢ ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) → 𝑏 = 𝐵 ) | |
| 13 | oveq | ⊢ ( 𝑝 = + → ( 𝑒 𝑝 𝑎 ) = ( 𝑒 + 𝑎 ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑝 = + → ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ↔ ( 𝑒 + 𝑎 ) = 𝑎 ) ) |
| 15 | oveq | ⊢ ( 𝑝 = + → ( 𝑎 𝑝 𝑒 ) = ( 𝑎 + 𝑒 ) ) | |
| 16 | 15 | eqeq1d | ⊢ ( 𝑝 = + → ( ( 𝑎 𝑝 𝑒 ) = 𝑎 ↔ ( 𝑎 + 𝑒 ) = 𝑎 ) ) |
| 17 | 14 16 | anbi12d | ⊢ ( 𝑝 = + → ( ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) ↔ ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) → ( ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) ↔ ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) |
| 19 | 12 18 | raleqbidv | ⊢ ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) → ( ∀ 𝑎 ∈ 𝑏 ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) |
| 20 | 12 19 | rexeqbidv | ⊢ ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) → ( ∃ 𝑒 ∈ 𝑏 ∀ 𝑎 ∈ 𝑏 ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) ↔ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) |
| 21 | 11 20 | biimtrdi | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑏 = ( Base ‘ 𝑔 ) ∧ 𝑝 = ( +g ‘ 𝑔 ) ) → ( ∃ 𝑒 ∈ 𝑏 ∀ 𝑎 ∈ 𝑏 ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) ↔ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) ) |
| 22 | 3 4 21 | sbc2iedv | ⊢ ( 𝑔 = 𝐺 → ( [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] ∃ 𝑒 ∈ 𝑏 ∀ 𝑎 ∈ 𝑏 ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) ↔ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) |
| 23 | df-mnd | ⊢ Mnd = { 𝑔 ∈ Smgrp ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] ∃ 𝑒 ∈ 𝑏 ∀ 𝑎 ∈ 𝑏 ( ( 𝑒 𝑝 𝑎 ) = 𝑎 ∧ ( 𝑎 𝑝 𝑒 ) = 𝑎 ) } | |
| 24 | 22 23 | elrab2 | ⊢ ( 𝐺 ∈ Mnd ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑒 + 𝑎 ) = 𝑎 ∧ ( 𝑎 + 𝑒 ) = 𝑎 ) ) ) |