This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modulo function I is the identity of the monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) . (Contributed by AV, 16-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | ||
| smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | ||
| smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | ||
| Assertion | smndex1id | ⊢ 𝐼 = ( 0g ‘ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | |
| 5 | smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | |
| 6 | smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | |
| 7 | nn0ex | ⊢ ℕ0 ∈ V | |
| 8 | 7 | mptex | ⊢ ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) ∈ V |
| 9 | 3 8 | eqeltri | ⊢ 𝐼 ∈ V |
| 10 | 9 | snid | ⊢ 𝐼 ∈ { 𝐼 } |
| 11 | elun1 | ⊢ ( 𝐼 ∈ { 𝐼 } → 𝐼 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) | |
| 12 | 10 11 | ax-mp | ⊢ 𝐼 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) |
| 13 | 12 5 | eleqtrri | ⊢ 𝐼 ∈ 𝐵 |
| 14 | 1 2 3 4 5 6 | smndex1bas | ⊢ ( Base ‘ 𝑆 ) = 𝐵 |
| 15 | 14 | eqcomi | ⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 16 | 15 | a1i | ⊢ ( 𝐼 ∈ 𝐵 → 𝐵 = ( Base ‘ 𝑆 ) ) |
| 17 | snex | ⊢ { 𝐼 } ∈ V | |
| 18 | ovex | ⊢ ( 0 ..^ 𝑁 ) ∈ V | |
| 19 | snex | ⊢ { ( 𝐺 ‘ 𝑛 ) } ∈ V | |
| 20 | 18 19 | iunex | ⊢ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ∈ V |
| 21 | 17 20 | unex | ⊢ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ∈ V |
| 22 | 5 21 | eqeltri | ⊢ 𝐵 ∈ V |
| 23 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 24 | 6 23 | ressplusg | ⊢ ( 𝐵 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) ) |
| 25 | 22 24 | mp1i | ⊢ ( 𝐼 ∈ 𝐵 → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) ) |
| 26 | id | ⊢ ( 𝐼 ∈ 𝐵 → 𝐼 ∈ 𝐵 ) | |
| 27 | 1 2 3 | smndex1ibas | ⊢ 𝐼 ∈ ( Base ‘ 𝑀 ) |
| 28 | 27 | a1i | ⊢ ( 𝐼 ∈ 𝐵 → 𝐼 ∈ ( Base ‘ 𝑀 ) ) |
| 29 | 1 2 3 4 5 | smndex1basss | ⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |
| 30 | 29 | sseli | ⊢ ( 𝑎 ∈ 𝐵 → 𝑎 ∈ ( Base ‘ 𝑀 ) ) |
| 31 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 32 | 1 31 23 | efmndov | ⊢ ( ( 𝐼 ∈ ( Base ‘ 𝑀 ) ∧ 𝑎 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐼 ( +g ‘ 𝑀 ) 𝑎 ) = ( 𝐼 ∘ 𝑎 ) ) |
| 33 | 28 30 32 | syl2an | ⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐼 ( +g ‘ 𝑀 ) 𝑎 ) = ( 𝐼 ∘ 𝑎 ) ) |
| 34 | 1 2 3 4 5 6 | smndex1mndlem | ⊢ ( 𝑎 ∈ 𝐵 → ( ( 𝐼 ∘ 𝑎 ) = 𝑎 ∧ ( 𝑎 ∘ 𝐼 ) = 𝑎 ) ) |
| 35 | 34 | simpld | ⊢ ( 𝑎 ∈ 𝐵 → ( 𝐼 ∘ 𝑎 ) = 𝑎 ) |
| 36 | 35 | adantl | ⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐼 ∘ 𝑎 ) = 𝑎 ) |
| 37 | 33 36 | eqtrd | ⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐼 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ) |
| 38 | 1 31 23 | efmndov | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝐼 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝐼 ) = ( 𝑎 ∘ 𝐼 ) ) |
| 39 | 30 28 38 | syl2anr | ⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝐼 ) = ( 𝑎 ∘ 𝐼 ) ) |
| 40 | 34 | simprd | ⊢ ( 𝑎 ∈ 𝐵 → ( 𝑎 ∘ 𝐼 ) = 𝑎 ) |
| 41 | 40 | adantl | ⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ∘ 𝐼 ) = 𝑎 ) |
| 42 | 39 41 | eqtrd | ⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝐼 ) = 𝑎 ) |
| 43 | 16 25 26 37 42 | grpidd | ⊢ ( 𝐼 ∈ 𝐵 → 𝐼 = ( 0g ‘ 𝑆 ) ) |
| 44 | 13 43 | ax-mp | ⊢ 𝐼 = ( 0g ‘ 𝑆 ) |