This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) is a monoid. (Contributed by AV, 16-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex1ibas.n | |- N e. NN |
||
| smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
||
| smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
||
| smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
||
| smndex1mgm.s | |- S = ( M |`s B ) |
||
| Assertion | smndex1mnd | |- S e. Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex1ibas.n | |- N e. NN |
|
| 3 | smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
|
| 4 | smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
|
| 5 | smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
|
| 6 | smndex1mgm.s | |- S = ( M |`s B ) |
|
| 7 | 1 2 3 4 5 6 | smndex1sgrp | |- S e. Smgrp |
| 8 | nn0ex | |- NN0 e. _V |
|
| 9 | 8 | mptex | |- ( x e. NN0 |-> ( x mod N ) ) e. _V |
| 10 | 3 9 | eqeltri | |- I e. _V |
| 11 | 10 | snid | |- I e. { I } |
| 12 | elun1 | |- ( I e. { I } -> I e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) ) |
|
| 13 | 11 12 | ax-mp | |- I e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
| 14 | 13 5 | eleqtrri | |- I e. B |
| 15 | id | |- ( I e. B -> I e. B ) |
|
| 16 | coeq1 | |- ( a = I -> ( a o. b ) = ( I o. b ) ) |
|
| 17 | 16 | eqeq1d | |- ( a = I -> ( ( a o. b ) = b <-> ( I o. b ) = b ) ) |
| 18 | coeq2 | |- ( a = I -> ( b o. a ) = ( b o. I ) ) |
|
| 19 | 18 | eqeq1d | |- ( a = I -> ( ( b o. a ) = b <-> ( b o. I ) = b ) ) |
| 20 | 17 19 | anbi12d | |- ( a = I -> ( ( ( a o. b ) = b /\ ( b o. a ) = b ) <-> ( ( I o. b ) = b /\ ( b o. I ) = b ) ) ) |
| 21 | 20 | ralbidv | |- ( a = I -> ( A. b e. B ( ( a o. b ) = b /\ ( b o. a ) = b ) <-> A. b e. B ( ( I o. b ) = b /\ ( b o. I ) = b ) ) ) |
| 22 | 21 | adantl | |- ( ( I e. B /\ a = I ) -> ( A. b e. B ( ( a o. b ) = b /\ ( b o. a ) = b ) <-> A. b e. B ( ( I o. b ) = b /\ ( b o. I ) = b ) ) ) |
| 23 | 1 2 3 4 5 6 | smndex1mndlem | |- ( b e. B -> ( ( I o. b ) = b /\ ( b o. I ) = b ) ) |
| 24 | 23 | rgen | |- A. b e. B ( ( I o. b ) = b /\ ( b o. I ) = b ) |
| 25 | 24 | a1i | |- ( I e. B -> A. b e. B ( ( I o. b ) = b /\ ( b o. I ) = b ) ) |
| 26 | 15 22 25 | rspcedvd | |- ( I e. B -> E. a e. B A. b e. B ( ( a o. b ) = b /\ ( b o. a ) = b ) ) |
| 27 | 14 26 | ax-mp | |- E. a e. B A. b e. B ( ( a o. b ) = b /\ ( b o. a ) = b ) |
| 28 | 1 2 3 4 5 | smndex1basss | |- B C_ ( Base ` M ) |
| 29 | ssel | |- ( B C_ ( Base ` M ) -> ( a e. B -> a e. ( Base ` M ) ) ) |
|
| 30 | ssel | |- ( B C_ ( Base ` M ) -> ( b e. B -> b e. ( Base ` M ) ) ) |
|
| 31 | 29 30 | anim12d | |- ( B C_ ( Base ` M ) -> ( ( a e. B /\ b e. B ) -> ( a e. ( Base ` M ) /\ b e. ( Base ` M ) ) ) ) |
| 32 | 28 31 | ax-mp | |- ( ( a e. B /\ b e. B ) -> ( a e. ( Base ` M ) /\ b e. ( Base ` M ) ) ) |
| 33 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 34 | snex | |- { I } e. _V |
|
| 35 | ovex | |- ( 0 ..^ N ) e. _V |
|
| 36 | snex | |- { ( G ` n ) } e. _V |
|
| 37 | 35 36 | iunex | |- U_ n e. ( 0 ..^ N ) { ( G ` n ) } e. _V |
| 38 | 34 37 | unex | |- ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) e. _V |
| 39 | 5 38 | eqeltri | |- B e. _V |
| 40 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 41 | 6 40 | ressplusg | |- ( B e. _V -> ( +g ` M ) = ( +g ` S ) ) |
| 42 | 39 41 | ax-mp | |- ( +g ` M ) = ( +g ` S ) |
| 43 | 42 | eqcomi | |- ( +g ` S ) = ( +g ` M ) |
| 44 | 1 33 43 | efmndov | |- ( ( a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( a ( +g ` S ) b ) = ( a o. b ) ) |
| 45 | 44 | eqeq1d | |- ( ( a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( ( a ( +g ` S ) b ) = b <-> ( a o. b ) = b ) ) |
| 46 | 43 | oveqi | |- ( b ( +g ` S ) a ) = ( b ( +g ` M ) a ) |
| 47 | 1 33 40 | efmndov | |- ( ( b e. ( Base ` M ) /\ a e. ( Base ` M ) ) -> ( b ( +g ` M ) a ) = ( b o. a ) ) |
| 48 | 47 | ancoms | |- ( ( a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( b ( +g ` M ) a ) = ( b o. a ) ) |
| 49 | 46 48 | eqtrid | |- ( ( a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( b ( +g ` S ) a ) = ( b o. a ) ) |
| 50 | 49 | eqeq1d | |- ( ( a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( ( b ( +g ` S ) a ) = b <-> ( b o. a ) = b ) ) |
| 51 | 45 50 | anbi12d | |- ( ( a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( ( ( a ( +g ` S ) b ) = b /\ ( b ( +g ` S ) a ) = b ) <-> ( ( a o. b ) = b /\ ( b o. a ) = b ) ) ) |
| 52 | 32 51 | syl | |- ( ( a e. B /\ b e. B ) -> ( ( ( a ( +g ` S ) b ) = b /\ ( b ( +g ` S ) a ) = b ) <-> ( ( a o. b ) = b /\ ( b o. a ) = b ) ) ) |
| 53 | 52 | ralbidva | |- ( a e. B -> ( A. b e. B ( ( a ( +g ` S ) b ) = b /\ ( b ( +g ` S ) a ) = b ) <-> A. b e. B ( ( a o. b ) = b /\ ( b o. a ) = b ) ) ) |
| 54 | 53 | rexbiia | |- ( E. a e. B A. b e. B ( ( a ( +g ` S ) b ) = b /\ ( b ( +g ` S ) a ) = b ) <-> E. a e. B A. b e. B ( ( a o. b ) = b /\ ( b o. a ) = b ) ) |
| 55 | 27 54 | mpbir | |- E. a e. B A. b e. B ( ( a ( +g ` S ) b ) = b /\ ( b ( +g ` S ) a ) = b ) |
| 56 | 1 2 3 4 5 6 | smndex1bas | |- ( Base ` S ) = B |
| 57 | 56 | eqcomi | |- B = ( Base ` S ) |
| 58 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 59 | 57 58 | ismnddef | |- ( S e. Mnd <-> ( S e. Smgrp /\ E. a e. B A. b e. B ( ( a ( +g ` S ) b ) = b /\ ( b ( +g ` S ) a ) = b ) ) ) |
| 60 | 7 55 59 | mpbir2an | |- S e. Mnd |