This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for smndex1mnd and smndex1id . (Contributed by AV, 16-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | ||
| smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | ||
| smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | ||
| Assertion | smndex1mndlem | ⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ∧ ( 𝑋 ∘ 𝐼 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | |
| 5 | smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | |
| 6 | smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | |
| 7 | elun | ⊢ ( 𝑋 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ↔ ( 𝑋 ∈ { 𝐼 } ∨ 𝑋 ∈ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) | |
| 8 | elsni | ⊢ ( 𝑋 ∈ { 𝐼 } → 𝑋 = 𝐼 ) | |
| 9 | 1 2 3 | smndex1iidm | ⊢ ( 𝐼 ∘ 𝐼 ) = 𝐼 |
| 10 | coeq2 | ⊢ ( 𝑋 = 𝐼 → ( 𝐼 ∘ 𝑋 ) = ( 𝐼 ∘ 𝐼 ) ) | |
| 11 | id | ⊢ ( 𝑋 = 𝐼 → 𝑋 = 𝐼 ) | |
| 12 | 9 10 11 | 3eqtr4a | ⊢ ( 𝑋 = 𝐼 → ( 𝐼 ∘ 𝑋 ) = 𝑋 ) |
| 13 | coeq1 | ⊢ ( 𝑋 = 𝐼 → ( 𝑋 ∘ 𝐼 ) = ( 𝐼 ∘ 𝐼 ) ) | |
| 14 | 9 13 11 | 3eqtr4a | ⊢ ( 𝑋 = 𝐼 → ( 𝑋 ∘ 𝐼 ) = 𝑋 ) |
| 15 | 12 14 | jca | ⊢ ( 𝑋 = 𝐼 → ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ∧ ( 𝑋 ∘ 𝐼 ) = 𝑋 ) ) |
| 16 | 8 15 | syl | ⊢ ( 𝑋 ∈ { 𝐼 } → ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ∧ ( 𝑋 ∘ 𝐼 ) = 𝑋 ) ) |
| 17 | eliun | ⊢ ( 𝑋 ∈ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ↔ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑋 ∈ { ( 𝐺 ‘ 𝑛 ) } ) | |
| 18 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 19 | 18 | sneqd | ⊢ ( 𝑛 = 𝑘 → { ( 𝐺 ‘ 𝑛 ) } = { ( 𝐺 ‘ 𝑘 ) } ) |
| 20 | 19 | eleq2d | ⊢ ( 𝑛 = 𝑘 → ( 𝑋 ∈ { ( 𝐺 ‘ 𝑛 ) } ↔ 𝑋 ∈ { ( 𝐺 ‘ 𝑘 ) } ) ) |
| 21 | 20 | cbvrexvw | ⊢ ( ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑋 ∈ { ( 𝐺 ‘ 𝑛 ) } ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑋 ∈ { ( 𝐺 ‘ 𝑘 ) } ) |
| 22 | elsni | ⊢ ( 𝑋 ∈ { ( 𝐺 ‘ 𝑘 ) } → 𝑋 = ( 𝐺 ‘ 𝑘 ) ) | |
| 23 | 1 2 3 4 | smndex1igid | ⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ∘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 24 | 1 2 3 | smndex1ibas | ⊢ 𝐼 ∈ ( Base ‘ 𝑀 ) |
| 25 | 1 2 3 4 | smndex1gid | ⊢ ( ( 𝐼 ∈ ( Base ‘ 𝑀 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝑘 ) ∘ 𝐼 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 26 | 24 25 | mpan | ⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝐺 ‘ 𝑘 ) ∘ 𝐼 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 27 | 23 26 | jca | ⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝐼 ∘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐺 ‘ 𝑘 ) ∘ 𝐼 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 28 | coeq2 | ⊢ ( 𝑋 = ( 𝐺 ‘ 𝑘 ) → ( 𝐼 ∘ 𝑋 ) = ( 𝐼 ∘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 29 | id | ⊢ ( 𝑋 = ( 𝐺 ‘ 𝑘 ) → 𝑋 = ( 𝐺 ‘ 𝑘 ) ) | |
| 30 | 28 29 | eqeq12d | ⊢ ( 𝑋 = ( 𝐺 ‘ 𝑘 ) → ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ↔ ( 𝐼 ∘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 31 | coeq1 | ⊢ ( 𝑋 = ( 𝐺 ‘ 𝑘 ) → ( 𝑋 ∘ 𝐼 ) = ( ( 𝐺 ‘ 𝑘 ) ∘ 𝐼 ) ) | |
| 32 | 31 29 | eqeq12d | ⊢ ( 𝑋 = ( 𝐺 ‘ 𝑘 ) → ( ( 𝑋 ∘ 𝐼 ) = 𝑋 ↔ ( ( 𝐺 ‘ 𝑘 ) ∘ 𝐼 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 33 | 30 32 | anbi12d | ⊢ ( 𝑋 = ( 𝐺 ‘ 𝑘 ) → ( ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ∧ ( 𝑋 ∘ 𝐼 ) = 𝑋 ) ↔ ( ( 𝐼 ∘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐺 ‘ 𝑘 ) ∧ ( ( 𝐺 ‘ 𝑘 ) ∘ 𝐼 ) = ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 34 | 27 33 | imbitrrid | ⊢ ( 𝑋 = ( 𝐺 ‘ 𝑘 ) → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ∧ ( 𝑋 ∘ 𝐼 ) = 𝑋 ) ) ) |
| 35 | 22 34 | syl | ⊢ ( 𝑋 ∈ { ( 𝐺 ‘ 𝑘 ) } → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ∧ ( 𝑋 ∘ 𝐼 ) = 𝑋 ) ) ) |
| 36 | 35 | impcom | ⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑋 ∈ { ( 𝐺 ‘ 𝑘 ) } ) → ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ∧ ( 𝑋 ∘ 𝐼 ) = 𝑋 ) ) |
| 37 | 36 | rexlimiva | ⊢ ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑋 ∈ { ( 𝐺 ‘ 𝑘 ) } → ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ∧ ( 𝑋 ∘ 𝐼 ) = 𝑋 ) ) |
| 38 | 21 37 | sylbi | ⊢ ( ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑋 ∈ { ( 𝐺 ‘ 𝑛 ) } → ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ∧ ( 𝑋 ∘ 𝐼 ) = 𝑋 ) ) |
| 39 | 17 38 | sylbi | ⊢ ( 𝑋 ∈ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } → ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ∧ ( 𝑋 ∘ 𝐼 ) = 𝑋 ) ) |
| 40 | 16 39 | jaoi | ⊢ ( ( 𝑋 ∈ { 𝐼 } ∨ 𝑋 ∈ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) → ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ∧ ( 𝑋 ∘ 𝐼 ) = 𝑋 ) ) |
| 41 | 7 40 | sylbi | ⊢ ( 𝑋 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) → ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ∧ ( 𝑋 ∘ 𝐼 ) = 𝑋 ) ) |
| 42 | 41 5 | eleq2s | ⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝐼 ∘ 𝑋 ) = 𝑋 ∧ ( 𝑋 ∘ 𝐼 ) = 𝑋 ) ) |