This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| grpidd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | ||
| grpidd.z | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) | ||
| grpidd.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) | ||
| grpidd.j | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) | ||
| Assertion | grpidd | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| 2 | grpidd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | |
| 3 | grpidd.z | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) | |
| 4 | grpidd.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) | |
| 5 | grpidd.j | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 9 | 3 1 | eleqtrd | ⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 10 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
| 11 | 10 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ 𝐵 ) |
| 12 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → + = ( +g ‘ 𝐺 ) ) |
| 13 | 12 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = ( 0 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 14 | 13 4 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 15 | 11 14 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 16 | 12 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = ( 𝑥 ( +g ‘ 𝐺 ) 0 ) ) |
| 17 | 16 5 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) |
| 18 | 11 17 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) |
| 19 | 6 7 8 9 15 18 | ismgmid2 | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐺 ) ) |